Skip to main content

Optimal Circle Search Despite the Presence of Faulty Robots

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2019)

Abstract

We consider (nf)-search on a circle, a search problem of a hidden exit on a circle of unit radius for \(n > 1\) robots, f of which are faulty. All the robots start at the centre of the circle and can move anywhere with maximum speed 1. During the search, robots may communicate wirelessly. All messages transmitted by all robots are tagged with the robots’ unique identifiers which cannot be corrupted. The search is considered complete when the exit is found by a non-faulty robot (which must visit its location) and the remaining non-faulty robots know the correct location of the exit.

We study two models of faulty robots. First, crash-faulty robots may stop operating as instructed, and thereafter they remain nonfunctional. Second, Byzantine-faulty robots may transmit untrue messages at any time during the search so as to mislead the non-faulty robots, e.g., lie about the location of the exit.

When there are only crash fault robots, we provide optimal algorithms for the (nf)-search problem, with optimal worst-case search completion time \(1+\frac{(f+1)2\pi }{n}\). Our main technical contribution pertains to optimal algorithms for (n, 1)-search with a Byzantine-faulty robot, minimizing the worst-case search completion time, which equals \(1+\frac{4\pi }{n}\).

K. Georgiou and E. Kranakis—Research supported in part by NSERC Discovery grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Figures in this paper depict robot trajectories during the execution of our search algorithm. They restrict to cases where the first announcement is made while robots search their first sector of length \(\theta =\frac{2\pi }{n}\), and no other announcement is made until time \(1+\theta \). It is assumed that agent \(a_0\) makes the first announcement. A black square shows the location of the announcement; a white square shows the locations of other agents at that time. A solid dot shows the starting positions of the robots on the unit circle (starting from the center of the circle, they move directly, in time 1, to their starting positions). Recall that the arc length between the starting position of \(a_0\) and the point of the announcement is denoted by t (hence, the announcement takes place in time \(1+t\)).

References

  1. Ahlswede, R., Wegener, I.: Search Problems. Wiley, Hoboken (1987)

    MATH  Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer, Heidelberg (2003). https://doi.org/10.1007/b100809

    Book  MATH  Google Scholar 

  3. Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  4. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  Google Scholar 

  5. Bellman, R.: An optimal search. Siam Rev. 5(3), 274–274 (1963)

    Article  Google Scholar 

  6. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Chapter  Google Scholar 

  7. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_10

    Chapter  Google Scholar 

  8. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14

    Chapter  Google Scholar 

  9. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: ISAAC, pp. 27:1–27:12 (2016)

    Google Scholar 

  10. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: PODC, pp. 405–414. ACM (2016)

    Google Scholar 

  11. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13

    Chapter  Google Scholar 

  12. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)

    Article  MathSciNet  Google Scholar 

  13. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating using face-to-face communication. CoRR, abs/1501.04985 (2015)

    Google Scholar 

  14. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    Article  MathSciNet  Google Scholar 

  15. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aris Pagourtzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I. (2019). Optimal Circle Search Despite the Presence of Faulty Robots. In: Dressler, F., Scheideler, C. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2019. Lecture Notes in Computer Science(), vol 11931. Springer, Cham. https://doi.org/10.1007/978-3-030-34405-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34405-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34404-7

  • Online ISBN: 978-3-030-34405-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics