Skip to main content

Basic Ingredients

  • Chapter
  • First Online:
N = 2 Supergravity in D = 4, 5, 6 Dimensions

Part of the book series: Lecture Notes in Physics ((LNP,volume 966))

Abstract

We give an introduction to the book, discussing the role of the \(\mathcal {N}=2\) theories, its geometric structure, and the superconformal tensor calculus. We also refer to other treatments. We then set out the plan of the book.

In the second part of the chapter we introduce tools that are useful for the construction of superconformal gauge theory and multiplets. We first discuss the catalogue of supersymmetric theories with 8 supercharges (Sect. 1.2) and their multiplets (Sect. 1.2.1). After a short Sect. 1.2.2 with the strategy, we discuss the conformal (Sect. 1.2.3) and then superconformal (Sect. 1.2.4) groups. The transformations of the fields under the conformal symmetry are also given in Sect. 1.2.3, while for the fermionic symmetries, this is discussed in a short Sect. 1.2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The restriction is due to interacting field theory descriptions, which e.g. in 4 dimensions does not allow fields with spin larger than 2.

  2. 2.

    We distinguish the multiplet that contains the graviton and gravitini, and is determined by specifying the dimension and the number of supersymmetries, and other multiplets, which we call ‘matter multiplets’.

  3. 3.

    In this review, we only consider Minkowski signature of spacetime. In the literature, also other signatures are discussed, e.g. Euclidean signature in a series of papers [5,6,7,8], and special geometry has also been defined for other signatures [9,10,11,12].

  4. 4.

    Strictly speaking: to quaternionic-Kähler geometry, which means that there is a metric. For the difference between these manifolds and the used terminology we refer to the review [16].

  5. 5.

    We thank G. Tartaglino-Mazzucchelli for his assistance in this overview.

  6. 6.

    Of course one can introduce 8 supercharges in 1 or 2 dimensions, where the elementary spinors have just one component. In 3 dimensions, gamma matrices are 2 × 2 matrices, and the theories with 8 supercharges are \(\mathcal {N}=4\) theories where the spinors satisfy a reality condition (a Majorana condition).

  7. 7.

    Different proofs of this statement can be given. A general argument has been given in [62]. This has been further discussed in [4, App. 6B]. For on-shell states in D = 4, see also [4, Sect. 6.4.1]. For solutions of field equations that preserve supersymmetry, a detailed explanation is in Appendix B of [63].

  8. 8.

    General coordinate transformations are also local gauge transformations that are more general than fixed translations. So the general coordinate-equivalent states should also be subtracted.

  9. 9.

    Coleman and Mandula prove that the largest spacetime group that is allowed without implying triviality of all scattering amplitudes is the conformal group. This theorem is valid under some assumptions, like the analyticity of the elastic two-body scattering amplitudes. Haag, Łopuszański and Sohnius base their analysis on the previous result and use group-theoretical arguments (essentially Jacobi identities). For an extension of the theorem to strongly coupled quantum field theories, see e.g. [73, 74].

  10. 10.

    Note that the scalar here has negative kinetic energy, and the final gravity action has positive kinetic energy.

  11. 11.

    A gauge fixing can be interpreted as choosing better coordinates such that only one field still transforms under the corresponding transformations. Then, the invariance is expressed as the absence of this field from the action. In this case we would use \(g^{\prime }_{\mu \nu } =\frac {\kappa ^2}{6}g_{\mu \nu }\phi ^2\) as D-invariant metric. One can check that this redefinition also leads to (1.12) in terms of the new field.

  12. 12.

    In Minkowski space \(z=\frac {1}{\sqrt {2}}\left ( x^1+x^0\right ) \) and \(\bar z=\frac {1}{\sqrt {2}}\left (x^1-x^0\right ) \) are not each other complex conjugates. In Euclidean signature they are complex conjugates.

  13. 13.

    In the 2-dimensional case \( \operatorname {\mathrm {SO}}(2,2)= \operatorname {\mathrm {SU}}(1,1)\times \operatorname {\mathrm {SU}}(1,1)\) is realized by the finite subgroup of the infinite dimensional conformal group, and is well known in terms of \(L_{-1}= {\textstyle \frac {1}{2}} (P_0 - P_1)\), \(L_0={\textstyle \frac {1}{2}}(D+M_{10})\), \(L_1={\textstyle \frac {1}{2}} (K_0 + K_1)\), \(\bar L_{-1}= {\textstyle \frac {1}{2}} (P_0 + P_1)\), \(\bar L_0={\textstyle \frac {1}{2}}(D-M_{10})\), \(\bar L_1={\textstyle \frac {1}{2}} (K_0 - K_1)\). Higher order L n, |n|≥ 2 have no analogs in D > 2.

  14. 14.

    The expression ξ always determines the parameters \(\{a^\mu ,\lambda ^{\mu \nu },\lambda _{\mathrm {D}},\lambda _{\mathrm {K}}^\mu \}\) as in (1.19).

  15. 15.

    Remember that, for the intrinsic part, \(\delta _K \delta _D \phi ^i =\delta _K (k_D^i(\phi ))=\partial _j k_D^i(\phi )\delta _K \phi ^j\).

  16. 16.

    The terminology reflects that the right-hand side is a constant times g ij. For a function times g ij it is just a ‘conformal Killing vector’.

  17. 17.

    However, with branes the assumptions of these papers may be too constrained. Other examples have been considered first in 10 and 11 dimensions in [77].

  18. 18.

    See Appendix B for the notations of groups and supergroups.

  19. 19.

    Note that the superalgebras that are relevant for quantum field theories, according to Coleman and Mandula [71] and Haag–Łopuszański–Sohnius [72], only exist for D ≤ 6. The maximal number of supercharges of the corresponding superconformal QFTs is bounded by the requirement that they admit a suitable stress-tensor multiplet, see e.g. [80] for a recent discussion.

  20. 20.

    To prepare these formulae, we made use of [81] for D = 4, apart from a sign change in the choice of charge conjugation, such that the anticommutators of fermionic generators have all opposite sign. For D = 5, we made use of [82], and for D = 6 of [83], but replacing there K by − K and U ij by \(-{\textstyle \frac {1}{2}} U_{ij}\).

References

  1. B. de Wit, A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity—Yang–Mills models. Nucl. Phys. B245, 89–117 (1984). https://doi.org/10.1016/0550-3213(84)90425-5

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory. Nucl. Phys. B426, 19–52 (1994). https://doi.org/10.1016/0550-3213(94)90124-4,10.1016/0550-3213(94)00449-8, arXiv:hep-th/9407087 [hep-th]. [Erratum: Nucl. Phys.B430,485(1994)]

  3. N. Seiberg, E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B431, 484–550 (1994). https://doi.org/10.1016/0550-3213(94)90214-3, arXiv:hep-th/9408099 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D.Z. Freedman, A. Van Proeyen, Supergravity (Cambridge University, Cambridge, 2012). http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/supergravity?format=AR

    Book  MATH  Google Scholar 

  5. V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry. I: vector multiplets. J. High Energy Phys. 03, 028 (2004). https://doi.org/10.1088/1126-6708/2004/03/028, arXiv:hep-th/0312001 [hep-th]

    Article  MathSciNet  Google Scholar 

  6. V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry. II: Hypermultiplets and the c-map. J. High Energy Phys. 06, 025 (2005). https://doi.org/10.1088/1126-6708/2005/06/025, arXiv:hep-th/0503094 [hep-th]

    Article  Google Scholar 

  7. V. Cortés, T. Mohaupt, Special geometry of Euclidean supersymmetry III: the local r-map, instantons and black holes. J. High Energy Phys. 07, 066 (2009). https://doi.org/10.1088/1126-6708/2009/07/066, arXiv:0905.2844 [hep-th]

    Article  MathSciNet  Google Scholar 

  8. V. Cortés, P. Dempster, T. Mohaupt, O. Vaughan, Special geometry of Euclidean supersymmetry IV: the local c-map. J. High Energy Phys. 10, 066 (2015). https://doi.org/10.1007/JHEP10(2015)066, arXiv:1507.04620 [hep-th]

  9. M.A. Lledó, Ó. Maciá, A. Van Proeyen, V.S. Varadarajan, Special geometry for arbitrary signatures, in Handbook on Pseudo-Riemannian Geometry and Supersymmetry, ed. by V. Cortés. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16, chap. 5 (European Mathematical Society, Zürich, 2010). hep-th/0612210

  10. W.A. Sabra, Special geometry and space-time signature. Phys. Lett. B773, 191–195 (2017). https://doi.org/10.1016/j.physletb.2017.08.021, arXiv:1706.05162 [hep-th]

    Article  ADS  MATH  Google Scholar 

  11. L. Gall, T. Mohaupt, Five-dimensional vector multiplets in arbitrary signature. J. High Energy Phys. 09, 053 (2018). https://doi.org/10.1007/JHEP09(2018)053, arXiv:1805.06312 [hep-th]

  12. V. Cortés, L. Gall, T. Mohaupt, Four-dimensional vector multiplets in arbitrary signature. arXiv:1907.12067 [hep-th]

  13. B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su, A. Van Proeyen, Gauge and matter fields coupled to N = 2 supergravity. Phys. Lett. B134, 37–43 (1984). https://doi.org/10.1016/0370-2693(84)90979-1

    Article  ADS  MathSciNet  Google Scholar 

  14. L. Alvarez-Gaumé, D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model. Commun. Math. Phys. 80, 443 (1981). https://doi.org/10.1007/BF01208280

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Bagger, E. Witten, Matter couplings in N = 2 supergravity. Nucl. Phys. B222, 1–10 (1983). https://doi.org/10.1016/0550-3213(83)90605-3

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Bergshoeff, S. Vandoren, A. Van Proeyen, The identification of conformal hypercomplex and quaternionic manifolds. Int. J. Geom. Meth. Mod. Phys. 3, 913–932 (2006). https://doi.org/10.1142/S0219887806001521, arXiv:math/0512084 [math.DG]

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Sierra, P.K. Townsend, An introduction to N = 2 rigid supersymmetry, in Supersymmetry and supergravity 1983, ed. by B. Milewski (World Scientific, Singapore, 1983)

    Google Scholar 

  18. E. Cremmer, A. Van Proeyen, Classification of Kähler manifolds in N = 2 vector multiplet–supergravity couplings. Class. Quant. Grav. 2, 445 (1985). https://doi.org/10.1088/0264-9381/2/4/010

    Article  ADS  MATH  Google Scholar 

  19. A. Strominger, Special geometry. Commun. Math. Phys. 133, 163–180 (1990). https://doi.org/10.1007/BF02096559

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. L. Castellani, R. D’Auria, S. Ferrara, Special geometry without special coordinates. Class. Quant. Grav. 7, 1767–1790 (1990). https://doi.org/10.1088/0264-9381/7/10/009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. Ferrara, M. Kaku, P.K. Townsend, P. van Nieuwenhuizen, Unified field theories with U(N) internal symmetries: gauging the superconformal group. Nucl. Phys. B129, 125–134 (1977). https://doi.org/10.1016/0550-3213(77)90023-2

    Article  ADS  Google Scholar 

  22. M. Kaku, P.K. Townsend, P. van Nieuwenhuizen, Properties of conformal supergravity. Phys. Rev. D17, 3179–3187 (1978). https://doi.org/10.1103/PhysRevD.17.3179

    ADS  MathSciNet  Google Scholar 

  23. M. Kaku, P.K. Townsend, Poincaré supergravity as broken superconformal gravity. Phys. Lett. 76B, 54–58 (1978). https://doi.org/10.1016/0370-2693(78)90098-9

    Article  ADS  Google Scholar 

  24. V. Pestun, M. Zabzine, Localization techniques in quantum field theories. J. Phys. A50(44), 440301 (2017). https://doi.org/10.1088/1751-8121/aa63c1, arXiv:1608.02952 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  25. P.S. Howe, Supergravity in superspace. Nucl. Phys. B199, 309–364 (1982). https://doi.org/10.1016/0550-3213(82)90349-2

    Article  ADS  MathSciNet  Google Scholar 

  26. S.M. Kuzenko, U. Lindström, M. Roček, G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace. J. High Energy Phys. 08, 023 (2009) . https://doi.org/10.1088/1126-6708/2009/08/023, arXiv:0905.0063 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  27. S.M. Kuzenko, G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity. J. High Energy Phys. 04, 032 (2008). https://doi.org/10.1088/1126-6708/2008/04/032, arXiv:0802.3953 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. W.D. Linch, III, G. Tartaglino-Mazzucchelli, Six-dimensional supergravity and projective superfields. J. High Energy Phys. 08, 075 (2012). https://doi.org/10.1007/JHEP08(2012)075, arXiv:1204.4195 [hep-th]

  29. D. Butter, \(\mathcal {N}=1\) conformal superspace in four dimensions. Ann. Phys. 325, 1026–1080 (2010). https://doi.org/10.1016/j.aop.2009.09.010, arXiv:0906.4399 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  30. D. Butter, \(\mathcal {N}=2\) conformal superspace in four dimensions. J. High Energy Phys. 10, 030 (2011). https://doi.org/10.1007/JHEP10(2011)030, arXiv:1103.5914 [hep-th]

  31. D. Butter, J. Novak, Component reduction in \(\mathcal {N}=2\) supergravity: the vector, tensor, and vector-tensor multiplets. J. High Energy Phys. 05, 115 (2012). https://doi.org/10.1007/JHEP05(2012)115, arXiv:1201.5431 [hep-th]

  32. D. Butter, S.M. Kuzenko, J. Novak, G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: new approach and applications. J. High Energy Phys. 02, 111 (2015). https://doi.org/10.1007/JHEP02(2015)111, arXiv:1410.8682 [hep-th]

  33. D. Butter, S.M. Kuzenko, J. Novak, S. Theisen, Invariants for minimal conformal supergravity in six dimensions. J. High Energy Phys. 12, 072 (2016). https://doi.org/10.1007/JHEP12(2016)072, arXiv:1606.02921 [hep-th]

  34. D. Butter, J. Novak, G. Tartaglino-Mazzucchelli, The component structure of conformal supergravity invariants in six dimensions. J. High Energy Phys. 05, 133 (2017). https://doi.org/10.1007/JHEP05(2017)133, arXiv:1701.08163 [hep-th]

  35. A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, Unconstrained N = 2 matter, Yang–Mills and supergravity theories in harmonic superspace. Class. Quant. Grav. 1, 469–498 (1984). https://doi.org/10.1088/0264-9381/1/5/004. [Erratum: Class. Quant. Grav.2,127(1985)]

    Article  ADS  MathSciNet  Google Scholar 

  36. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E.S. Sokatchev, Harmonic superspace, in Cambridge Monographs on Mathematical Physics (Cambridge University, Cambridge, 2007). https://doi.org/10.1017/CBO9780511535109, http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/harmonic-superspace?format=PB

  37. A. Karlhede, U. Lindström, M. Rocek, Selfinteracting tensor multiplets in N = 2 superspace. Phys. Lett. 147B, 297–300 (1984). https://doi.org/10.1016/0370-2693(84)90120-5

    Article  ADS  Google Scholar 

  38. U. Lindström, M. Roček, New hyperkähler metrics and new supermultiplets. Commun. Math. Phys. 115, 21 (1988). https://doi.org/10.1007/BF01238851

    Article  ADS  MATH  Google Scholar 

  39. U. Lindström, M. Roček, N = 2 super Yang–Mills theory in projective superspace. Commun. Math. Phys. 128, 191 (1990). https://doi.org/10.1007/BF02097052

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. U. Lindström, M. Roček, Properties of hyperkähler manifolds and their twistor spaces. Commun. Math. Phys. 293, 257–278 (2010). https://doi.org/10.1007/s00220-009-0923-0, arXiv:0807.1366 [hep-th]

    Article  ADS  MATH  Google Scholar 

  41. S.M. Kuzenko, Lectures on nonlinear sigma-models in projective superspace. J. Phys. A43, 443001 (2010). https://doi.org/10.1088/1751-8113/43/44/443001, arXiv:1004.0880 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. A.S. Galperin, N.A. Ky, E. Sokatchev, N = 2 supergravity in superspace: solution to the constraints. Class. Quant. Grav. 4, 1235 (1987). https://doi.org/10.1088/0264-9381/4/5/022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E. Sokatchev, N = 2 supergravity in superspace: different versions and matter couplings. Class. Quant. Grav. 4, 1255 (1987). https://doi.org/10.1088/0264-9381/4/5/023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S.M. Kuzenko, G. Tartaglino-Mazzucchelli, Five-dimensional superfield supergravity. Phys. Lett. B661, 42–51 (2008). https://doi.org/10.1016/j.physletb.2008.01.055, arXiv:0710.3440 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S.M. Kuzenko, G. Tartaglino-Mazzucchelli, 5D Supergravity and projective superspace. J. High Energy Phys. 02, 004 (2008). https://doi.org/10.1088/1126-6708/2008/02/004, arXiv:0712.3102 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  46. S.M. Kuzenko, U. Lindström, M. Rocek, G. Tartaglino-Mazzucchelli, 4D \(\mathcal {N} = 2\) supergravity and projective superspace. J. High Energy Phys. 09, 051 (2008). https://doi.org/10.1088/1126-6708/2008/09/051, arXiv:0805.4683 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Butter, New approach to curved projective superspace. Phys. Rev. D92(8), 085004 (2015). https://doi.org/10.1103/PhysRevD.92.085004, arXiv:1406.6235 [hep-th]

  48. D. Butter, Projective multiplets and hyperkähler cones in conformal supergravity. J. High Energy Phys. 06, 161 (2015). https://doi.org/10.1007/JHEP06(2015)161, arXiv:1410.3604 [hep-th]

  49. D. Butter, On conformal supergravity and harmonic superspace. J. High Energy Phys. 03, 107 (2016). https://doi.org/10.1007/JHEP03(2016)107, arXiv:1508.07718 [hep-th]

  50. P. Fré, P. Soriani, TheN = 2 Wonderland: From Calabi–Yau Manifolds to Topological Field Theories (World Scientific, Singapore, 1995)

    Book  MATH  Google Scholar 

  51. L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Frè T. Magri, N = 2 supergravity and N = 2 super Yang–Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111–189 (1997). https://doi.org/10.1016/S0393-0440(97)00002-8, arXiv:hep-th/9605032 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. A. Ceresole, G. Dall’Agata, General matter coupled \(\mathcal {N} = 2\), D = 5 gauged supergravity. Nucl. Phys. B585, 143–170 (2000). https://doi.org/10.1016/S0550-3213(00)00339-4, arXiv:hep-th/0004111 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. N. Cribiori, G. Dall’Agata, On the off-shell formulation of N = 2 supergravity with tensor multiplets. J. High Energy Phys. 08, 132 (2018). https://doi.org/10.1007/JHEP08(2018)132, arXiv:1803.08059 [hep-th]

  54. N. Boulanger, B. Julia, L. Traina, Uniqueness of \( \mathcal {N} \)= 2 and 3 pure supergravities in 4D. J. High Energy Phys. 04, 097 (2018). https://doi.org/10.1007/JHEP04(2018)097, arXiv:1802.02966 [hep-th]

  55. I.A. Batalin, G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D28, 2567–2582 (1983). https://doi.org/10.1103/PhysRevD.28.2567,10.1103/PhysRevD.30.508. [Erratum: Phys. Rev.D30,508(1984)]

  56. M. Henneaux, Lectures on the antifield—BRST formalism for gauge theories. Nucl. Phys. Proc. Suppl. 18A, 47–106 (1990). https://doi.org/10.1016/0920-5632(90)90647-D

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. G. Barnich, M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B311, 123–129 (1993). https://doi.org/10.1016/0370-2693(93)90544-R, arXiv:hep-th/9304057 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  58. J. Gomis, J. París, S. Samuel, Antibracket, antifields and gauge theory quantization. Phys. Rept. 259, 1–145 (1995). https://doi.org/10.1016/0370-1573(94)00112-G, arXiv:hep-th/9412228 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  59. E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, A. Van Proeyen, N = 2 supergravity in five dimensions revisited. Class. Quant. Grav. 21, 3015–3041 (2004). https://doi.org/10.1088/0264-9381/23/23/C01,10.1088/0264-9381/21/12/013, arXiv:hep-th/0403045[hep-th], erratum 23 (2006) 7149

  60. T. Kugo, K. Ohashi, Supergravity tensor calculus in 5D from 6D. Prog. Theor. Phys. 104, 835–865 (2000). https://doi.org/10.1143/PTP.104.835, arXiv:hep-ph/0006231 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  61. T. Kugo, K. Ohashi, Off-shell d = 5 supergravity coupled to matter–Yang–Mills system. Prog. Theor. Phys. 105, 323–353 (2001). https://doi.org/10.1143/PTP.105.323, arXiv:hep-ph/0010288 [hep-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. M.F. Sohnius, Introducing supersymmetry. Phys. Rept. 128, 39–204 (1985). https://doi.org/10.1016/0370-1573(85)90023-7

    Article  ADS  MathSciNet  Google Scholar 

  63. P. Binétruy, G. Dvali, R. Kallosh, A. Van Proeyen, Fayet–Iliopoulos terms in supergravity and cosmology. Class. Quant. Grav. 21, 3137–3170 (2004). https://doi.org/10.1088/0264-9381/21/13/005, arXiv:hep-th/0402046 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. J. Strathdee, Extended Poincaré supersymmetry. Int. J. Mod. Phys. A2, 273 (1987). https://doi.org/10.1142/S0217751X87000120, [104(1986)]

    Article  ADS  MATH  Google Scholar 

  65. M. Sohnius, K.S. Stelle, P.C. West, Off mass shell formulation of extended supersymmetric gauge theories. Phys. Lett. 92B, 123–127 (1980). https://doi.org/10.1016/0370-2693(80)90319-6

    Article  ADS  MathSciNet  Google Scholar 

  66. B. de Wit, V. Kaplunovsky, J. Louis, D. Lüst, Perturbative couplings of vector multiplets in N = 2 heterotic string vacua. Nucl. Phys. B451, 53–95 (1995). https://doi.org/10.1016/0550-3213(95)00291-Y, arXiv:hep-th/9504006 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. P. Claus, B. de Wit, B. Kleijn, R. Siebelink, P. Termonia, N = 2 supergravity Lagrangians with vector–tensor multiplets. Nucl. Phys. B512, 148–178 (1998). https://doi.org/10.1016/S0550-3213(97)00781-5, arXiv:hep-th/9710212 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. M. Günaydin, M. Zagermann, The gauging of five-dimensional, N = 2 Maxwell–Einstein supergravity theories coupled to tensor multiplets. Nucl. Phys. B572, 131–150 (2000). https://doi.org/10.1016/S0550-3213(99)00801-9, arXiv:hep-th/9912027 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. M. Günaydin, M. Zagermann, The vacua of 5d, N = 2 gauged Yang–Mills/Einstein/tensor supergravity: Abelian case. Phys. Rev. D62, 044028 (2000). https://doi.org/10.1103/PhysRevD.62.044028, arXiv:hep-th/0002228 [hep-th]

  70. M. Günaydin, M. Zagermann, Gauging the full R-symmetry group in five-dimensional, N = 2 Yang–Mills/Einstein/tensor supergravity. Phys. Rev. D63, 064023 (2001). https://doi.org/10.1103/PhysRevD.63.064023, arXiv:hep-th/0004117 [hep-th]

  71. S. Coleman, J. Mandula, All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967). https://doi.org/10.1103/PhysRev.159.1251

    Article  ADS  MATH  Google Scholar 

  72. R. Haag, J.T. Łopuszański, M. Sohnius, All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B88, 257 (1975). https://doi.org/10.1016/0550-3213(75)90279-5, [257(1974)]

    Article  ADS  MathSciNet  Google Scholar 

  73. J. Maldacena, A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry. J. Phys. A46, 214011 (2013). https://doi.org/10.1088/1751-8113/46/21/214011, arXiv:1112.1016 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. V. Alba, K. Diab, Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions. J. High Energy Phys. 03, 044 (2016). https://doi.org/10.1007/JHEP03(2016)044, arXiv:1510.02535 [hep-th]

  75. E. Sezgin, Y. Tanii, Superconformal sigma models in higher than two dimensions. Nucl. Phys. B443, 70–84 (1995). https://doi.org/10.1016/0550-3213(95)00081-3, arXiv:hep-th/9412163 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. W. Nahm, Supersymmetries and their representations. Nucl. Phys. B135, 149 (1978). https://doi.org/10.1016/0550-3213(78)90218-3, [7(1977)]

    Article  ADS  Google Scholar 

  77. J.W. van Holten, A. Van Proeyen, N = 1 supersymmetry algebras in d = 2,  3,  4 mod. 8. J. Phys. A15, 3763 (1982). https://doi.org/10.1088/0305-4470/15/12/028

    Article  ADS  MathSciNet  Google Scholar 

  78. R. D’Auria, S. Ferrara, M.A. Lledó, V.S. Varadarajan, Spinor algebras. J. Geom. Phys. 40, 101–128 (2001). https://doi.org/10.1016/S0393-0440(01)00023-7, arXiv:hep-th/0010124 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. M.A. Lledó, V.S. Varadarajan, Spinor algebras and extended superconformal algebras, in Proceedings of 2nd International Symposium on Quantum Theory and Symmetries (QTS-2): Cracow, Poland, July 18-21, 2001, pp. 463–472 (2002). https://doi.org/10.1142/9789812777850_0057, arXiv:hep-th/0111105 [hep-th].

  80. C. Cordova, T.T. Dumitrescu, K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions. J. High Energy Phys. 03, 163 (2019). https://doi.org/10.1007/JHEP03(2019)163, arXiv:1612.00809 [hep-th]

  81. P. Claus, Conformal Supersymmetry in Supergravity and on Branes, Ph.D. thesis, Leuven, 2000

    Google Scholar 

  82. E. Bergshoeff, S. Cucu, M. Derix, T. de Wit, R. Halbersma, A. Van Proeyen, Weyl multiplets of N = 2 conformal supergravity in five dimensions. J. High Energy Phys. 06, 051 (2001). https://doi.org/10.1088/1126-6708/2001/06/051, arXiv:hep-th/0104113 [hep-th]

    Article  MathSciNet  Google Scholar 

  83. E. Bergshoeff, E. Sezgin, A. Van Proeyen, Superconformal tensor calculus and matter couplings in six dimensions. Nucl. Phys. B264, 653 (1986). https://doi.org/10.1016/0550-3213(86)90503-1, [Erratum: Nucl. Phys.B598,667(2001)]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lauria, E., Van Proeyen, A. (2020). Basic Ingredients. In: N = 2 Supergravity in D = 4, 5, 6 Dimensions. Lecture Notes in Physics, vol 966. Springer, Cham. https://doi.org/10.1007/978-3-030-33757-5_1

Download citation

Publish with us

Policies and ethics