Skip to main content

DeepPrivacy: A Generative Adversarial Network for Face Anonymization

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2019)

Abstract

We propose a novel architecture which is able to automatically anonymize faces in images while retaining the original data distribution. We ensure total anonymization of all faces in an image by generating images exclusively on privacy-safe information. Our model is based on a conditional generative adversarial network, generating images considering the original pose and image background. The conditional information enables us to generate highly realistic faces with a seamless transition between the generated face and the existing background. Furthermore, we introduce a diverse dataset of human faces, including unconventional poses, occluded faces, and a vast variability in backgrounds. Finally, we present experimental results reflecting the capability of our model to anonymize images while preserving the data distribution, making the data suitable for further training of deep learning models. As far as we know, no other solution has been proposed that guarantees the anonymization of faces while generating realistic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code: www.github.com/hukkelas/DeepPrivacy.

  2. 2.

    FDF Dataset: www.github.com/hukkelas/FDF.

References

  1. Boyle, M., Edwards, C., Greenberg, S.: The effects of filtered video on awareness and privacy. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 1–10. ACM (2000). https://doi.org/10.1145/358916.358935

  2. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm

  3. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

  4. Gross, R., Sweeney, L., de la Torre, F., Baker, S.: Model-based face de-identification. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006. IEEE (2006). https://doi.org/10.1109/cvprw.2006.125

  5. Gross, R., Sweeney, L., Cohn, J., de la Torre, F., Baker, S.: Face de-identification. In: Senior, A. (ed.) Protecting Privacy in Video Surveillance, pp. 129–146. Springer, London (2009). https://doi.org/10.1007/978-1-84882-301-3_8

    Chapter  Google Scholar 

  6. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, October 2017. https://doi.org/10.1109/iccv.2017.322

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 6626–6637. Curran Associates, Inc. (2017)

    Google Scholar 

  8. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1501–1510. IEEE, October 2017. https://doi.org/10.1109/iccv.2017.167

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017. https://doi.org/10.1109/cvpr.2017.632

  10. Jo, Y., Park, J.: SC-FEGAN: face editing generative adversarial network with user’s sketch and color. arXiv preprint arXiv:1902.06838 (2019)

  11. Jourabloo, A., Yin, X., Liu, X.: Attribute preserved face de-identification. In: Proceedings of 2015 International Conference on Biometrics, ICB 2015, pp. 278–285 (2015). https://doi.org/10.1109/ICB.2015.7139096

  12. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk99zCeAb

  13. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4401–4410 (2019)

    Google Scholar 

  14. Li, J., et al.: DSFD: dual shot face detector. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  15. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5892–5900. IEEE, July 2017. https://doi.org/10.1109/cvpr.2017.624

  16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125. IEEE, July 2017. https://doi.org/10.1109/cvpr.2017.106

  17. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  18. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  19. Neustaedter, C., Greenberg, S., Boyle, M.: Blur filtration fails to preserve privacy for home-based video conferencing. ACM Trans. Comput. Hum. Interact. 13(1), 1–36 (2006). https://doi.org/10.1145/1143518.1143519

    Article  Google Scholar 

  20. Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face images. IEEE Trans. Knowl. Data Eng. 17(2), 232–243 (2005). https://doi.org/10.1109/tkde.2005.32

    Article  Google Scholar 

  21. NVIDIA: A pyTorch extension: tools for easy mixed precision and distributed training in PyTorch (2019). https://github.com/NVIDIA/apex

  22. Ren, Z., Lee, Y.J., Ryoo, M.S.: Learning to anonymize faces for privacy preserving action detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 639–655. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_38

    Chapter  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 26–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_3

    Chapter  Google Scholar 

  25. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  26. Thomee, B., et al.: YFCC100M: the new data in multimedia research. arXiv preprint arXiv:1503.01817 (2015). http://arxiv.org/abs/1503.01817

  27. Yang, S., Luo, P., Loy, C.C., Tang, X.: WIDER FACE: a face detection benchmark. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016. https://doi.org/10.1109/cvpr.2016.596

  28. Yazıcı, Y., Foo, C.S., Winkler, S., Yap, K.H., Piliouras, G., Chandrasekhar, V.: The unusual effectiveness of averaging in GAN training. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=SJgw_sRqFQ

  29. Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6882–6890. IEEE, July 2017. https://doi.org/10.1109/cvpr.2017.728

  30. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 7354–7563. PMLR (2019). http://proceedings.mlr.press/v97/zhang19d.html

  31. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5908–5916 (2017). https://doi.org/10.1109/ICCV.2017.629

  32. Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: \(S^{3}\)FD: single shot scale-invariant face detector. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 192–201. IEEE, October 2017. https://doi.org/10.1109/iccv.2017.30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkon Hukkelås .

Editor information

Editors and Affiliations

Appendix A - Training Details

Appendix A - Training Details

We use the same hyperparameters as Karras et al. [12], except the following: We use a batch size of 256, 256, 128, 72 and 48 for resolution 8, 16, 32, 64, and 128. We use a learning rate of 0.00175 with the Adam optimizer. For each expansion of the network, we have a transition and stabilization phase of 1.2M images each. We use an exponential running average for the weights of the generator as this improves overall image quality [28]. For the running average, we use a decay \(\beta \) given by:

$$\begin{aligned} \beta = 0.5^{\frac{B}{10^4}}, \end{aligned}$$
(1)

where B is the batch size. Our final model was trained for 17 days on two NVIDIA V100-32 GB GPUs.

Image Pre-processing

Figure 7 shows the input pre-processing pipeline. For each detected face with a bounding box and keypoint detection, we find the smallest possible square bounding box which surrounds the face bounding box. Then, we resize the expanded bounding box to the target size (\(128 \times 128\)). We replace the pixels within the face bounding box with a constant pixel value of 128. Finally, we shift the pixel values to the range \([-1, 1]\).

Tensor Core Modifications

To utilize tensor cores in NVIDIA’s new Volta architecture, we do several modifications to our network, following the requirements of tensor cores. First, we ensure that each convolutional block use number of filters that are divisible by 8. Secondly, we make certain that the batch size for each GPU is divisible by 8. Further, we use automatic mixed precision for pytorch [21] to significantly improve our training time. We see an improvement of \(220\%\) in terms of training speed with mixed precision training.

Fig. 7.
figure 7

Input Pipeline: Each detected face is cropped to a quadratic image, then we replace the privacy-sensitive information with a constant value, and feed it to the generator. The keypoints are represented as a one-hot encoded image.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hukkelås, H., Mester, R., Lindseth, F. (2019). DeepPrivacy: A Generative Adversarial Network for Face Anonymization. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11844. Springer, Cham. https://doi.org/10.1007/978-3-030-33720-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33720-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33719-3

  • Online ISBN: 978-3-030-33720-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics