Skip to main content

Achieving Generalizable Robustness of Deep Neural Networks by Stability Training

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11824))

Included in the following conference series:

Abstract

We study the recently introduced stability training as a general-purpose method to increase the robustness of deep neural networks against input perturbations. In particular, we explore its use as an alternative to data augmentation and validate its performance against a number of distortion types and transformations including adversarial examples. In our image classification experiments using ImageNet data stability training performs on a par or even outperforms data augmentation for specific transformations, while consistently offering improved robustness against a broader range of distortion strengths and types unseen during training, a considerably smaller hyperparameter dependence and less potentially negative side effects compared to data augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A corresponding preprocessing script is available at https://gist.github.com/nstrodt/bd270131160f02564f0165e888976471.

References

  1. Bachman, P., Alsharif, O., Precup, D.: Learning with pseudo-ensembles. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) NIPS, pp. 3365–3373. Curran Associates, Inc., New York (2014)

    Google Scholar 

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: MixMatch: a holistic approach to semi-supervised learning (2019)

    Google Scholar 

  3. Carlini, N., et al.: On evaluating adversarial robustness. arXiv preprint: arXiv:1902.06705 (2019)

  4. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press, Cambridge (2010)

    Google Scholar 

  5. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data. arXiv preprint: arXiv:1805.09501 (2018)

  6. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

    Article  Google Scholar 

  7. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1994)

    Article  Google Scholar 

  8. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)

    Google Scholar 

  9. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015)

    Google Scholar 

  10. Hataya, R., Nakayama, H.: Unifying semi-supervised and robust learning by mixup. In: ICLR the 2nd Learning from Limited Labeled Data (LLD) Workshop (2019)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: CVPR, pp. 1026–1034 (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) NIPS, pp. 1097–1105. Curran Associates, Inc., New York (2012)

    Google Scholar 

  15. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)

    Google Scholar 

  16. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  17. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  18. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(1/k\(^2\)). Dokl. AN USSR 269, 543–547 (1983)

    Google Scholar 

  19. Oliver, A., Odena, A., Raffel, C., Cubuk, E.D., Goodfellow, I.J.: Realistic evaluation of deep semi-supervised learning algorithms. arXiv preprint: arXiv:1804.09170 (2018)

  20. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

    Google Scholar 

  21. Rajput, S., Feng, Z., Charles, Z., Loh, P.L., Papailiopoulos, D.: Does data augmentation lead to positive margin? arXiv preprint: arXiv:1905.03177 (2019)

  22. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: NIPS, pp. 1171–1179 (2016)

    Google Scholar 

  23. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  24. Stanford University’s CS231 course: Tiny ImageNet. https://tiny-imagenet.herokuapp.com/. Accessed 7 May 2019

  25. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint: arXiv:1312.6199 (2013)

  26. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NIPS (2017)

    Google Scholar 

  27. Taylor, L., Nitschke, G.: Improving deep learning using generic data augmentation. arXiv preprint: arXiv:1708.06020 (2017)

  28. Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. arXiv preprint: arXiv:1903.03825 (2019)

  29. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation. arXiv preprint: arXiv:1904.12848 (2019)

  30. Yaeger, L.S., Lyon, R.F., Webb, B.J.: Effective training of a neural network character classifier for word recognition. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) NIPS, pp. 807–816. MIT Press, Cambridge (1997)

    Google Scholar 

  31. Zhang, C., Cui, J., Yang, B.: Learning optimal data augmentation policies via Bayesian optimization for image classification tasks (2019)

    Google Scholar 

  32. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  33. Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep neural networks via stability training. In: CVPR, pp. 4480–4488 (2016)

    Google Scholar 

  34. Zhu, X.J.: Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF) through the Berlin Big Data Center under Grant 01IS14013A and the Berlin Center for Machine Learning under Grant 01IS180371.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Strodthoff .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 329 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laermann, J., Samek, W., Strodthoff, N. (2019). Achieving Generalizable Robustness of Deep Neural Networks by Stability Training. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics