Skip to main content

Hot Spots of Crime: Methods and Predictive Analytics

  • Chapter
  • First Online:
Geographies of Behavioural Health, Crime, and Disorder

Part of the book series: GeoJournal Library ((GEJL,volume 126))

Abstract

As part of a contemporary look at the intersection of geography and crime, the current chapter offers a new conceptual definition of predictive policing, an overview of some of the most commonly used methods to identify crime “hot spots” retrospectively, prospective hot spot analysis, and predictive policing analytics. Police and researchers have mapped crime and disorder for decades, consistently finding that these incidents clusters in areas commonly referred to as hot spots. Understanding where and when crime and disorder cluster, both spatially and temporally, provides vital information necessary for community leaders to design and implement effective crime-reduction strategies and community-safety initiatives. Until recently, however, researchers and analysts have operated retrospectively—using incident location information to describe historical crime patterns through the use of data visualization techniques or to design reactionary policing strategies based on the assumption that historical crime patterns are reliable indicators of future problem areas. Unlike traditional crime hot spot analysis, predictive analytics identify patterns in crime data that relate to criminal activity in the near future. The aim of this approach is to exploit patterns identified in data dynamically and to prevent crime through proactive resource allocation. This approach is distinct from how crime analysis and intelligence-led policing has historically been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In KDE, bandwidths are defined as either “adaptive” or “fixed interval.” Adaptive bandwidths are typically used when a sample of point locations are used in lieu of all points located within the study area, which is generally not the case in crime analysis. If adaptive bandwidths are used, the minimum sample size is an additional parameter that must be defined. Fixed interval bandwidths, on the other hand, are used when the entire population of events is analyzed (e.g., all crimes within a given timeframe). When a fixed interval bandwidth is selected, the size of the bandwidth must be defined (Brunsdon 1995).

  2. 2.

    Instead of asking users to define the actual cell size, most GIS applications that include KDE as an analytic method for identifying hot spots (e.g., ArcGIS and MapInfo) ask the user to indicate how many columns the grid overlay should be divided into. This input value is then used to calculate the actual size of each grid cell.

References

  • Anselin, L. (1995). Local indicators of spatial association–LISA. Geographical Analysis, 27(2), 93–115.

    Article  Google Scholar 

  • Bailey, T., & Gatrell, A. (1995). Interactive spatial data analysis. Essex, England: Longman Scientific and Technical.

    Google Scholar 

  • Ball, G. H., & Hall, D. J. (1970). A clustering technique for summarizing multivariate data. Behavioral Science, 12, 153–155.

    Article  Google Scholar 

  • Barnum, J. D., Caplan, J. M., Kennedy, L. W., & Piza, E. L. (2017). The crime kaleidoscope: A cross-jurisdictional analysis of place features and crime in three urban environments. Applied Geography, 79, 203–211. https://doi.org/10.1016/j.apgeog.2016.12.011.

    Article  Google Scholar 

  • Bates, S. (1987). Spatial and temporal analysis of crime. Research bulletin, April, 1987. Chicago: Illinois Criminal Justice Information Authority.

    Google Scholar 

  • Birks, D., Townsley, M., & Hart, T. C. (2019). Predictive policing in an Australian context: Assessing viability and utility. Australia Institute of Criminology (AIC): Canberra, Australia.

    Google Scholar 

  • Bowers, K. J., Johnson, S. D., & Pease, K. (2004). Prospective hot-spotting: The future of crime mapping? British Journal of Criminology, 44, 641–658.

    Article  Google Scholar 

  • Brantingham, P. J. (2018). The logic of data bias and its impact on place-based predictive policing. Ohio State Journal of Criminal Law, 15, 473–486.

    Google Scholar 

  • Brunsdon, C. (1995). Estimating probability surfaces for geographical point data: An adaptive kernel algorithm. Computers & Geosciences, 21(7), 877–894.

    Article  Google Scholar 

  • Canter, P. (1993). Hot spot area analysis in Baltimore County. STACNews (vol.1) (Winter, 1993).

    Google Scholar 

  • Caplan, J. M., & Kennedy, L. W. (2010). Risk terrain modeling manual: Theoretical framework and technical steps of spatial risk assessment. Newark, NJ: Rutgers Center on Public Security.

    Google Scholar 

  • Caplan, J. M., Kennedy, L. W., & Miller, J. (2011). Risk terrain modeling: Brokering criminological theory and GIS methods for crime forecasting. Justice Quarterly, 28(2), 360–381.

    Article  Google Scholar 

  • Caplan, J. M., Kennedy, L. W., & Piza, E. L. (2013). Joint utility of event-dependent and environmental crime analysis techniques for violent crime forecasting. Crime & Delinquency, 59(2), 243–270. https://journals.sagepub.com/doi/abs/10.1177/0011128712461901.

  • Chainey, S., & Ratcliffe, J. H. (2005). GIS and crime mapping. San Francisco, CA: Wiley.

    Book  Google Scholar 

  • Chainey, S., Tompson, L., & Uhlig, S. (2008a). The utility of hotspot mapping for predicting patterns of crime. Security Journal, 21, 4–28.

    Article  Google Scholar 

  • Chainey, S., Tompson, L., & Uhlig, S. (2008b). Response to Pezzuchi. Security Journal, 21, 293–294.

    Article  Google Scholar 

  • Chainey, S., Tompson, L., & Uhlig, S. (2008c). Response to Levine. Security Journal, 21, 303–306.

    Article  Google Scholar 

  • D’Andrade, R. (1978). U-statistic hierarchical clustering. Psychometrika, 4, 58–67.

    Google Scholar 

  • Drawve, G., & Barnum, J. D. (2015). Place-based risk factors for aggravated assault across police divisions in Little Rock, Arkansas. Journal of Crime and Justice, 41(2), 173–192.

    Article  Google Scholar 

  • Eck, J. E., Chainey, S., Cameron, J. G., Leitner, M., & Wilson, R. E. (2005). Mapping crime: Understanding hotspots. National Institute of Justice Special Report.

    Google Scholar 

  • Edmonds, W., & Mallard, J. (2011, September). Using risk terrain modeling to analyze holiday robberies in Arlington, TX. Paper presented at the training conference of the International Association of Crime Analysts, Hyannis, MA.

    Google Scholar 

  • Fielding, M., & Jones, V. (2012). Disrupting the optimal forager: Predictive risk mapping and domestic burglary reduction in Trafford, Greater Manchester. International Journal of Police Science & Management, 14(1), 30–41.

    Article  Google Scholar 

  • Garnier, S., Caplan, J. M., & Kennedy, L. W. (2018). Predicting dynamical crime distribution from environmental and social influences. Frontiers in Applied Mathematics and Statistics. Online first at https://doi.org/10.3389/fams.2018.00013.

  • Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189–206.

    Article  Google Scholar 

  • Groff, E. R., & Taniguchi, T. (2018). Micro-level policing for preventing near repeat residential burglary: Final monograph. Washington, D.C.: Police Foundation.

    Google Scholar 

  • Hart, T. C., & Miethe, T. D. (2015). Configural behavior settings of crime event locations: Towards an alternative conceptualization of criminogenic micro-environments. Journal of Research in Crime and Delinquency, 52(3), 373–402. https://doi.org/10.1177/0022427814566639.

    Article  Google Scholar 

  • Hart, T. C., & Zandbergen, P. A. (2012). Effects of data quality on predictive hotspot mapping (NCJ-239861). Final technical report prepared for the National Institute of Justice in compliance with cooperative agreement #2009-IJ-CX-0022. Washington, D.C.

    Google Scholar 

  • Hart, T. C., & Zandbergen, P. A. (2013). Reference data and geocoding quality: Examining completeness and positional accuracy of street geocoded crime incidents. Policing: An International Journal of Police Strategies & Management, 36(2), 263–294.

    Google Scholar 

  • Hart, T. C., & Zandbergen, P. A. (2014). Kernel density estimation and hotspot mapping: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting. Policing: An International Journal of Police Strategies & Management, 37(2), 305–323.

    Google Scholar 

  • Hartigan, J. A. (1975). Clustering algorithms. New York: Wiley.

    Google Scholar 

  • Hunchlab. (2018). PROVE utility [Apparatus and software]. Azavea. Philadelphia, PA.

    Google Scholar 

  • Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241–254.

    Article  Google Scholar 

  • Johnson, S. D., & Bowers, K. J. (2004). The stability of space-time clusters of burglary. The British Journal of Criminology, 44(1), 55–65.

    Article  Google Scholar 

  • Johnson, S. D., Summers, L., & Pease, K. (2009). Offender as forager? A direct test of the boost account of victimization. Journal of Quantitative Criminology, 25(2), 181–200.

    Article  Google Scholar 

  • Levine, N. (2008). The “hottest” part of a hotspot: Comments on “The utility of hotspot mapping for predicting spatial patters of crime”. Security Journal, 21, 295–302.

    Article  Google Scholar 

  • Levine, N. (2015). CrimeStat: A spatial statistics program for the analysis of crime incident locations (v 4.02) [Apparatus and software]. Ned Levine & Associates, Houston, Texas, and the National Institute of Justice, Washington, D.C.

    Google Scholar 

  • McBratney, A. B., & deBruijter, J. J. (1992). A continuum approach to soil classification by modified fuzzy k-means with extragrades. Journal of Soil Science, 43, 159–175.

    Article  Google Scholar 

  • Mohler, G. O., Short, M. B., Malinowski, S., Johnson, M., Tita, G. E., Bertozzi, A. L., et al. (2015). Randomized control field trials of predictive policing. Journal of the American Statistical Association, 110(512), 1399–1411. https://doi.org/10.1080/01621459.2015.1077710.

    Article  Google Scholar 

  • Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27(4), 286–306.

    Article  Google Scholar 

  • Perry, W. L., McInnis, B., Price, C. C., Smith, S. C., & Hollywood, J. S. (2013). Predictive policing: The role of crime forecasting in law enforcement operations. Washington, D.C.: Rand Corporation.

    Book  Google Scholar 

  • Pezzuchi, G. (2008). A brief commentary on “The utility of hotspot mapping for predicting spatial patterns of crime”. Security Journal, 21, 291–292.

    Article  Google Scholar 

  • Piza, E. L., Kennedy, L. W., & Caplan, J. M. (2018). Facilitators and impediments to designing, implementing, and evaluating risk-based policing strategies using risk terrain modeling: Insights from a multi-city evaluation in the United States. European Journal of Criminal Policy and Research, 24(4), 489–513. https://doi.org/10.1007/s10610-017-9367-9.

    Article  Google Scholar 

  • Predpol. (2018). How PredPol works: We provide guidance on where and when to patrol. Retrieved from http://www.predpol.com/how-predpol-works/ (Accessed June 3, 2018).

  • Ratcliffe, J. H. (2007). Near repeat calculator [Apparatus and software]. Philadelphia, PA: Temple University. Retrieved from http://www.cla.temple.edu/cj/resources/near-repeat-calculator/ (Accessed June 3, 2018).

  • Ratcliffe, J. H. (2014). What is the future…of predictive policing? Translational Criminology, 6, 4–5.

    Google Scholar 

  • Ratcliffe, J. H., & Rengert, G. F. (2008). Near-repeat patterns in Philadelphia shootings. Security Journal, 21, 58–76.

    Article  Google Scholar 

  • Short, M. B., D’Orsogna, M. R., Brantingham, P. J., & Tita, G. E. (2009). Measuring and modeling repeat and near-repeat burglary effects. Journal of Quantitative Criminology, 25(3), 325–339. https://doi.org/10.1007/s10940-009-9068-8.

    Article  Google Scholar 

  • Spring, J. V., & Block, C. R. (1989). STAC user’s manual. Chicago: Illinois Criminal Justice Information Authority.

    Google Scholar 

  • Tseloni, A., & Pease, K. (2003). Repeat personal victimization. ‘Boosts’ or ‘flags’? The British Journal of Criminology, 43(1), 196–212.

    Google Scholar 

  • Thompson, H. R. (1956). Distribution of distance to nth neighbour in a population of randomly distributed individuals. Ecology, 37, 391–394.

    Article  Google Scholar 

  • Townsley, M., Homel, R., & Chaseling, J. (2003). Infectious burglaries: A test of the near repeat hypothesis. The British Journal of Criminology, 43(1), 615–633.

    Article  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Weisburd, D., & Majmundar, M. K. (2018). Proactive policing: Effects on crime and communities. Washington, D.C.: National Academies Press.

    Book  Google Scholar 

  • Yerxa, M. (2013). Evaluating the temporal parameters of risk terrain modeling with residential burglary. Crime Mapping: A Journal of Research and Practice, 5(1), 7–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Hart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hart, T.C. (2020). Hot Spots of Crime: Methods and Predictive Analytics. In: Lersch, K., Chakraborty, J. (eds) Geographies of Behavioural Health, Crime, and Disorder. GeoJournal Library, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-030-33467-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33467-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33466-6

  • Online ISBN: 978-3-030-33467-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics