Skip to main content

FAIM – A ConvNet Method for Unsupervised 3D Medical Image Registration

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2019)

Abstract

We present a new unsupervised learning algorithm, “FAIM”, for 3D medical image registration. With a different architecture than the popular “U-net” [10], the network takes a pair of full image volumes and predicts the displacement fields needed to register source to target. Compared with “U-net” based registration networks such as VoxelMorph [2], FAIM has fewer trainable parameters but can achieve higher registration accuracy as judged by Dice score on region labels in the Mindboggle-101 dataset. Moreover, with the proposed penalty loss on negative Jacobian determinants, FAIM produces deformations with many fewer “foldings”, i.e. regions of non-invertibility where the surface folds over itself. We varied the strength of this penalty and found that FAIM is able to maintain both the advantages of higher accuracy and fewer “folding” locations over VoxelMorph, over a range of hyper-parameters. We also evaluated Probabilistic VoxelMorph [3], both in its original form and with its U-net backbone replaced with our FAIM network. We found that the choice of backbone makes little difference. The original version of FAIM outperformed Probabilistic VoxelMorph for registration accuracy, and also for invertibility if FAIM is trained using an anti-folding penalty. Code for this paper is freely available at https://github.com/dykuang/Medical-image-registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Their corresponding labels are not used in training.

References

  1. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  3. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  5. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint: arXiv:1412.6980 (2014)

  7. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012)

    Article  Google Scholar 

  8. Li, H., Fan, Y.: Non-rigid image registration using fully convolutional networks with deep self-supervision. arXiv preprint: arXiv:1709.00799 (2017)

  9. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017, Part I. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31

    Chapter  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Shan, S., et al.: Unsupervised end-to-end learning for deformable medical image registration. arXiv preprint: arXiv:1711.08608 (2017)

  12. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017, Part I. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  14. Wang, S., Kim, M., Wu, G., Shen, D.: Scalable high performance image registration framework by unsupervised deep feature representations learning. In: Deep Learning for Medical Image Analysis, pp. 245–269. Elsevier (2017)

    Google Scholar 

  15. Yang, X., Kwitt, R., Niethammer, M.: Fast predictive image registration. In: Carneiro, G., et al. (eds.) LABELS 2016/DLMIA 2016. LNCS, vol. 10008, pp. 48–57. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_6

    Chapter  Google Scholar 

  16. Zhang, J.: Inverse-consistent deep networks for unsupervised deformable image registration. arXiv preprint: arXiv:1809.03443 (2018)

Download references

Acknowledgements

This work was supported in part by a Discovery Grant from NSERC Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuang, D., Schmah, T. (2019). FAIM – A ConvNet Method for Unsupervised 3D Medical Image Registration. In: Suk, HI., Liu, M., Yan, P., Lian, C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science(), vol 11861. Springer, Cham. https://doi.org/10.1007/978-3-030-32692-0_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32692-0_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32691-3

  • Online ISBN: 978-3-030-32692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics