Skip to main content

Towards Multiple Instance Learning and Hermann Weyl’s Discrepancy for Robust Image-Guided Bronchoscopic Intervention

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11768))

Abstract

This paper proposes an advantageous approach that introduces multiple instance learning (MIL) and Hermann Weyl’s discrepancy (HWD) to improve image-guided bronchoscopic intervention. Numerous 2D-3D registration methods used for bronchoscopic navigation suffer from problematic bronchoscopic video images (e.g., bubbles and collision) that easily collapse the registration optimization since these images remain challenging to precisely calculate the similarity between bronchoscopic real images and virtual renderings generated from CT slices, resulting in inaccurate bronchoscopic navigation. To address this limitation, we develop a new navigation framework that employs a MIL-driven image classification strategy to remove problematic frames and then performs a HWD-enhanced 2D-3D registration procedure. We validate our framework on patient data. The experimental results demonstrate that our effective and accurate navigation method outperforms others approaches. In particular, the average navigation accuracy of position and orientation was improved from (6.8, 18.0) to 3.5 mm, 9.4\(^{\circ }\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://neurohive.io/en/popular-networks/vgg16/.

References

  1. Deguchi, D., et al.: Selective image similarity measure for bronchoscope tracking based on image registration. MedIA 13(4), 621–633 (2009)

    Google Scholar 

  2. Soper, T.D., Haynor, D.R., Glenny, R.W., Seibel, E.J.: In vivo validation of a hybrid tracking system for navigation of an ultrathin bronchoscope within peripheral airways. IEEE TBME 57(3), 736–745 (2010)

    Google Scholar 

  3. Luo, X., Feuerstein, M., Deguchi, D., Kitasaka, T., Takabatake, H., Mori, K.: Development and comparison of new hybrid motion tracking for bronchoscopic navigation. MedIA 16(3), 577–596 (2012)

    Google Scholar 

  4. Luo, X., Wan, Y., He, X., Mori, K.: Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking. MedIA 24(1), 282–296 (2015)

    Google Scholar 

  5. Hofstad, E.F., et al.: Intraoperative localized constrained registration in navigated bronchoscopy. Med. Phys. 44(8), 4204–4212 (2017)

    Article  Google Scholar 

  6. Shen, M., Giannarou, S., Shah, P.L., Yang, G.-Z.: BRANCH: bifurcation recognition for airway navigation based on structural characteristics. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 182–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_21

    Chapter  Google Scholar 

  7. Byrnes, P.D., Higgins, W.E.: Efficient bronchoscopic video summarization. IEEE TBME 66(3), 848–863 (2018)

    Google Scholar 

  8. Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE TPAMI 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  9. Moser, B.A.: A similarity measure for image and volumetric data based on Hermann Weyl’s discrepancy. IEEE TPAMI 33(11), 2321–2329 (2011)

    Article  Google Scholar 

  10. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. Proc. ICML 1998, 341–349 (1998)

    Google Scholar 

  11. Viola, P., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. Proc. NIPS 2005, 1417–1426 (2005)

    Google Scholar 

  12. Gavin H.: The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Technical report, Duke University, USA (2011)

    Google Scholar 

Download references

Acknowledgment

This work was partly supported by the Fundamental Research Funds for the Central Universities (No. 20720180062) and National Natural Science Foundation of China (No. 61971367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongbiao Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, X., Zeng, HQ., Du, YP., Cheng, X. (2019). Towards Multiple Instance Learning and Hermann Weyl’s Discrepancy for Robust Image-Guided Bronchoscopic Intervention. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11768. Springer, Cham. https://doi.org/10.1007/978-3-030-32254-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32254-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32253-3

  • Online ISBN: 978-3-030-32254-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics