Skip to main content

Fully Automated Pancreas Segmentation with Two-Stage 3D Convolutional Neural Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11765))

Abstract

Due to the fact that pancreas is an abdominal organ with very large variations in shape and size, automatic and accurate pancreas segmentation can be challenging for medical image analysis. In this work, we proposed a fully automated two stage framework for pancreas segmentation based on convolutional neural networks (CNN). In the first stage, a U-Net is trained for the down-sampled 3D volume segmentation. Then a candidate region covering the pancreas is extracted from the estimated labels. Motivated by the superior performance reported by renowned region based CNN, in the second stage, another 3D U-Net is trained on the candidate region generated in the first stage. We evaluated the performance of the proposed method on the NIH computed tomography (CT) dataset, and verified its superiority over other state-of-the-art 2D and 3D approaches for pancreas segmentation in terms of dice-sorensen coefficient (DSC) accuracy in testing. The mean DSC of the proposed method is 85.99%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT.

References

  1. Farag, A., Lu, L., Roth, H.R., Liu, J., Turkbey, E., Summers, R.M.: A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Trans. Med. Imaging 26(1), 386–399 (2017)

    Article  MathSciNet  Google Scholar 

  2. Li, J., Lin, X., Che, H., Li, H., Qian, X.: Probability map guided bi-directional recurrent UNet for pancreas segmentation. Arxiv (2019), https://arxiv.org/abs/1903.00923

  3. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. In: Medical Imaging with Deep Learning (MIDL) (2018)

    Google Scholar 

  4. Roth, H., et al.: Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med. Image Anal. 45, 94–107 (2017)

    Article  Google Scholar 

  5. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  6. Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_52

    Chapter  Google Scholar 

  7. Xia, Y., Xie, L., Liu, F., Zhu, Z., Fishman, E.K., Yuille, A.L.: Bridging the gap between 2D and 3D organ segmentation with volumetric fusion net. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 445–453. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_51

    Chapter  Google Scholar 

  8. Yu, Q., Xie, L., Wang, Y., Zhou, Y., Fishman, E.K., Yuille, A.L.: Recurrent saliency transformation network: incorporating multi-stage visual cues for small organ segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  9. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), vol. 1, pp. 693–701 (2017)

    Google Scholar 

  10. Zhu, Z., Xia, Y., Shen, W., Fishman, E., Yuille, A.: A 3D coarse-to-fine framework for volumetric medical image segmentation. In: International Conference on 3D Vision (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningning Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, N., Tong, N., Ruan, D., Sheng, K. (2019). Fully Automated Pancreas Segmentation with Two-Stage 3D Convolutional Neural Networks. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11765. Springer, Cham. https://doi.org/10.1007/978-3-030-32245-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32245-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32244-1

  • Online ISBN: 978-3-030-32245-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics