Skip to main content

Instance Segmentation of Biomedical Images with an Object-Aware Embedding Learned with Local Constraints

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Automatic instance segmentation is a problem that occurs in many biomedical applications. State-of-the-art approaches either perform semantic segmentation or refine object bounding boxes obtained from detection methods. Both suffer from crowded objects to varying degrees, merging adjacent objects or suppressing a valid object. In this work, we assign an embedding vector to each pixel through a deep neural network. The network is trained to output embedding vectors of similar directions for pixels from the same object, while adjacent objects are orthogonal in the embedding space, which effectively avoids the fusion of objects in a crowd. Our method yields state-of-the-art results even with a light-weighted backbone network on a cell segmentation (BBBC006 + DSB2018) and a leaf segmentation data set (CVPPP2017). The code and model weights are public available (https://github.com/looooongChen/instance_segmentation_with_pixel_embeddings/).

This work was supported by the Deutsche Forschungsgemeinschaft (Research Training Group 2416 MultiSenses-MultiScales).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://data.broadinstitute.org/bbbc/BBBC006/.

  2. 2.

    https://www.kaggle.com/c/data-science-bowl-2018.

  3. 3.

    https://www.plant-phenotyping.org/CVPPP2017-challenge.

  4. 4.

    http://cocodataset.org/#home.

References

  1. Scharr, H., et al.: Leaf segmentation in plant phenotyping: a collation study. Mach. Vis. Appl. 27(4), 585–606 (2016)

    Article  Google Scholar 

  2. Ulman, V., et al.: An objective comparison of cell-tracking algorithms. Nat. Methods 14, 1141–1152 (2017)

    Article  Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  4. Chen, H., Qi, X., Yu L., Dou, Q., Qin, J., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: 2016 CVPR, pp. 2487–2496 (2016)

    Google Scholar 

  5. Ren, S., He, K, Girshick, R., Sun, J,: Faster R-CNN: towards real-time object detection with region proposal networks. In: 28th NIPS, pp. 91–99 (2015)

    Google Scholar 

  6. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 ICCV, pp. 2980-2988 (2017)

    Google Scholar 

  8. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30

    Chapter  Google Scholar 

  9. Jetley, S., Sapienza, M., Golodetz, S., Torr, P.H.: Straight to shapes: real-time detection of encoded shapes. In: 2017 CVPR, pp. 4207–4216 (2017)

    Google Scholar 

  10. De Brabandere, B., Neven, D., Van Gool, L.: Semantic instance segmentation with a discriminative loss function. CoRR (2017)

    Google Scholar 

  11. Fathi, A., et al.: Semantic instance segmentation via deep metric learning. CoRR (2017)

    Google Scholar 

  12. De Brabandere, B., Neven, D., Van Gool, L.: Semantic instance segmentation for autonomous driving. In: 2017 CVPR Workshop, pp. 478–480 (2017)

    Google Scholar 

  13. Kong, S., Fowlkes, C.C.: Recurrent pixel embedding for instance grouping. In: CVPR, pp. 9018–9028 (2018)

    Google Scholar 

  14. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 CVPR, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Merhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Strauch, M., Merhof, D. (2019). Instance Segmentation of Biomedical Images with an Object-Aware Embedding Learned with Local Constraints. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics