Skip to main content

Energy Efficient Naming in Beeping Networks

  • Conference paper
  • First Online:
Ad-Hoc, Mobile, and Wireless Networks (ADHOC-NOW 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11803))

Included in the following conference series:

Abstract

A single-hop beeping network is a distributed communication model in which each station can communicate with all other but only by \(1-bit\) messages called beeps. In this paper, we focus on resolving two fundamental distributed computing issues: the naming and the counting on this model. Especially, we are interested in optimizing energy complexity and running time for those issues. Our contribution is to have design randomized algorithms with an optimal running time of \(O(n \log n)\) and optimal \(O(\log n)\) energy complexity whether for the naming or the counting for a single-hop beeping network of n stations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The underlying graph of the network is a complete graph.

  2. 2.

    An event \(\varepsilon _n\) occurs with high probability if \(\mathbb {P}[\varepsilon _n]\ge 1-\frac{1}{n^c}\) for any constant \(c>0\).

References

  1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)

    Article  Google Scholar 

  2. Bordim, J.L., Cui, J., Hayashi, T., Nakano, K., Olariu, S.: Energy-efficient initialization protocols for ad-hoc radio networks. ISAAC 1999. LNCS, vol. 1741, pp. 215–224. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46632-0_23

    Chapter  Google Scholar 

  3. Brandes, P., Kardas, M., Klonowski, M., Pająk, D., Wattenhofer, R.: Approximating the size of a radio network in beeping model. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 358–373. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_23

    Chapter  Google Scholar 

  4. Casteigts, A., Métivier, Y., Robson, J.M., Zemmari, A.: Counting in one-hop beeping networks. Theoret. Comput. Sci. (2016, to appear)

    Google Scholar 

  5. Celis, L.E., Reingold, O., Segev, G., Wieder, U.: Balls and bins: smaller hash families and faster evaluation. SIAM J. Comput. 42(3), 1030–1050 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chang, Y.J., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential separations in the energy complexity of leader election. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 771–783. ACM (2017)

    Google Scholar 

  7. Chlebus, B.S., De Marco, G., Talo, M.: Naming a channel with beeps. Fundamenta Informaticae 153(3), 199–219 (2017)

    Article  MathSciNet  Google Scholar 

  8. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9_15

    Chapter  Google Scholar 

  9. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications and Signal Processing, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  10. Fuchs, M., Hwang, H.K.: Dependence between external path-length and size in random tries. arXiv preprint arXiv:1604.08658 (2016)

  11. Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio networks. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 748–766 (2013)

    Google Scholar 

  12. Ghaffari, M., Lynch, N., Sastry, S.: Leader election using loneliness detection. Distrib. Comput. 25(6), 427–450 (2012)

    Article  Google Scholar 

  13. Hayashi, T., Nakano, K., Olariu, S.: Randomized initialization protocols for packet radio networks. In: ipps, p. 544. IEEE (1999)

    Google Scholar 

  14. Jacquet, P., Milioris, D., Mühlethaler, P.: A novel energy efficient broadcast leader election. In: 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 495–504. IEEE (2013)

    Google Scholar 

  15. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Efficient algorithms for leader election in radio networks. In: Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, pp. 51–57. ACM (2002)

    Google Scholar 

  16. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Energy-efficient size approximation of radio networks with no collision detection. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 279–289. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45655-4_31

    Chapter  Google Scholar 

  17. Kardas, M., Klonowski, M., Pajak, D.: Energy-efficient leader election protocols for single-hop radio networks. In: 2013 42nd International Conference on Parallel Processing (ICPP), pp. 399–408. IEEE (2013)

    Google Scholar 

  18. Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., Trehan, A.: Sublinear bounds for randomized leader election. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 348–362. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35668-1_24

    Chapter  Google Scholar 

  19. Lavault, C., Marckert, J.F., Ravelomanana, V.: Quasi-optimal energy-efficient leader election algorithms in radio networks. J. Inf. Comput. 205(5), 679 (2007)

    Article  MathSciNet  Google Scholar 

  20. Nakano, K.: Optimal initializing algorithms for a reconfigurable mesh. J. Parallel Distrib. Comput. 24(2), 218–223 (1995)

    Article  Google Scholar 

  21. Nakano, K., Olariu, S.: Energy-efficient initialization protocols for radio networks with no collision detection. In: 2000 International Conference on Parallel Processing, pp. 263–270 (2000)

    Google Scholar 

  22. Nakano, K., Olariu, S.: Energy-efficient initialization protocols for single-hop radio networks with no collision detection. IEEE Trans. Parallel Distrib. Syst. 11(8), 851–863 (2000)

    Article  Google Scholar 

  23. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE Trans. Parallel Distrib. Syst. 13(5), 516–526 (2002)

    Article  Google Scholar 

  24. Perkins, C.E., et al.: Ad Hoc Networking, vol. 1. Addison-Wesley, Reading (2001)

    Google Scholar 

  25. Raab, M., Steger, A.: “Balls into Bins” — A Simple and Tight Analysis. In: Luby, M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49543-6_13

    Chapter  MATH  Google Scholar 

  26. Ramanathan, M.K., Ferreira, R.A., Jagannathan, S., Grama, A., Szpankowski, W.: Randomized leader election. Distrib. Comput. 19(5–6), 403–418 (2007)

    Article  Google Scholar 

  27. Ravelomanana, V.: Randomized initialization of a wireless multihop network. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, pp. 324b–324b. IEEE (2005)

    Google Scholar 

  28. Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed algorithm for maximal independent set selection. In: Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, pp. 147–156. ACM (2013)

    Google Scholar 

  29. Vlady, R.: Time-optimal and energy-efficient size approximation of radio networks. In: 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 233–237. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ny Aina Andriambolamalala or Vlady Ravelomanana .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Worst Case for \(\mathrm {STL}\)

Here, we show a simulation of the execution of Algorithm 1 on the worst case for \(\mathrm {STL}\) in a complete binary Tree to count the number of waking time of this node.

figure d

Legends: hexagons represent the \(\mathrm {STL}\) waking steps of the node, squares are the \(\mathrm {STN}\) waking steps and circles represent the other waking steps. The numbers inside these shapes represent the season where the node wakes up. Numbers without any shape represent the sleeping steps of the node. Dotted lines represents the transition between two steps \(t_i, t_{i+1}\) on any season where the node starts to sleeps or remains sleeping. And solid lines the transition between two steps \(t_i, t_{i+1}\) on any season where the node wakes up or remains awake.

Appendix 2: Worst Case for \(\mathrm {STN}\)

In this section, we show a simulation of the execution of Algorithm 1 on the worst case for \(\mathrm {STN}\) in a complete binary Tree to count the number of waking time of this node.

figure e

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andriambolamalala, N.A., Ravelomanana, V. (2019). Energy Efficient Naming in Beeping Networks. In: Palattella, M., Scanzio, S., Coleri Ergen, S. (eds) Ad-Hoc, Mobile, and Wireless Networks. ADHOC-NOW 2019. Lecture Notes in Computer Science(), vol 11803. Springer, Cham. https://doi.org/10.1007/978-3-030-31831-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31831-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31830-7

  • Online ISBN: 978-3-030-31831-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics