Skip to main content

Are Parametric Markov Chains Monotonic?

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11781))

Abstract

This paper presents a simple algorithm to check whether reachability probabilities in parametric Markov chains are monotonic in (some of) the parameters. The idea is to construct—only using the graph structure of the Markov chain and local transition probabilities—a pre-order on the states. Our algorithm cheaply checks a sufficient condition for monotonicity. Experiments show that monotonicity in several benchmarks is automatically detected, and monotonicity can speed up parameter synthesis up to orders of magnitude faster than a symbolic baseline.

Supported by the DFG RTG 2236 “UnRAVeL”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The complement of the parameter feasibility problem.

  2. 2.

    That is, \(G = (S,E)\) with \(E = \{(s,t) \mid s,t \in S \wedge s \preceq _{}t \wedge (\not \exists s'\in S.~s\preceq _{}s' \preceq _{}t)\} \).

  3. 3.

    Although monotonicity is not explicitly mentioned in [40].

References

  1. PARAM website (2019). https://depend.cs.uni-saarland.de/tools/param/

  2. Aflaki, S., Volk, M., Bonakdarpour, B., Katoen, J.P., Storjohann, A.: Automated fine tuning of probabilistic self-stabilizing algorithms. In: SRDS. IEEE CS (2017)

    Google Scholar 

  3. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28

    Chapter  MATH  Google Scholar 

  4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_30

    Chapter  MATH  Google Scholar 

  6. Bharadwaj, S., Roux, S.L., Pérez, G.A., Topcu, U.: Reduction techniques for model checking and learning in MDPs. In: IJCAI. ijcai.org (2017)

    Google Scholar 

  7. Bohnenkamp, H.C., van der Stok, P., Hermanns, H., Vaandrager, F.W.: Cost-optimization of the IPv4 zeroconf protocol. In: DSN. IEEE CS (2003)

    Google Scholar 

  8. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of stochastic biochemical systems using quantitative model checking. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_7

    Chapter  Google Scholar 

  9. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient synthesis of robust models for stochastic systems. J. Syst. Softw. 143, 140–158 (2018)

    Article  Google Scholar 

  10. Ceska, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise parameter synthesis for stochastic biochemical systems. Acta Inf. 54(6), 589–623 (2017). https://doi.org/10.1007/s00236-016-0265-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Chatterjee, K., Sen, K., Henzinger, T.A.: Model-Checking \(\omega \)-Regular Properties of Interval Markov Chains. In: Amadio, R. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 302–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9_22

    Chapter  MATH  Google Scholar 

  12. Chatzieleftheriou, G., Katsaros, P.: Abstract model repair for probabilistic systems. Inf. Comput. 259(1), 142–160 (2018)

    Article  MathSciNet  Google Scholar 

  13. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model repair for Markov decision processes. In: TASE. IEEE (2013)

    Google Scholar 

  14. Chonev, V.: Reachability in augmented interval Markov chains. CoRR abs/1701.02996 (2017)

    Google Scholar 

  15. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_10

    Chapter  Google Scholar 

  16. Daley, D.J.: Stochastically monotone Markov chains. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 10, 305–317 (1968). https://doi.org/10.1007/BF00531852

    Article  MathSciNet  MATH  Google Scholar 

  17. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of probabilistic systems by successive refinements. In: de Alfaro, L., Gilmore, S. (eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44804-7_3

    Chapter  MATH  Google Scholar 

  18. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21

    Chapter  MATH  Google Scholar 

  19. Dehnert, C., et al.: PROPhESY: A PRObabilistic ParamEter SYnthesis Tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13

    Chapter  Google Scholar 

  20. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: Majumdar, Rupak, Kunčak, Viktor (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

    Chapter  Google Scholar 

  21. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In: ICSE. ACM (2011)

    Google Scholar 

  22. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative verification and sensitivity analysis at run time. IEEE TSE 42(1), 75–99 (2016)

    Google Scholar 

  23. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric Markov chains. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 300–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_18

    Chapter  Google Scholar 

  24. Gouberman, A., Siegle, M., Tati, B.: Markov chains with perturbed rates to absorption: theory and application to model repair. Perf. Eval. 130, 32–50 (2019)

    Article  Google Scholar 

  25. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs. Theor. Comput. Sci. 735, 111–131 (2018)

    Article  MathSciNet  Google Scholar 

  26. Haddad, S., Pekergin, N.: Using stochastic comparison for efficient model checking of uncertain Markov chains. In: QEST. IEEE CS (2009)

    Google Scholar 

  27. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Softw. Tools Technol. Transf. 13(1), 3–19 (2010). https://doi.org/10.1007/s10009-010-0146-x

    Article  Google Scholar 

  28. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_20

    Chapter  Google Scholar 

  29. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)

    Article  MathSciNet  Google Scholar 

  30. Hutschenreiter, L., Baier, C., Klein, J.: Parametric Markov chains: PCTL complexity and fraction-free Gaussian elimination. In: GandALF, EPTCS, vol. 256 (2017)

    Google Scholar 

  31. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_31

    Chapter  Google Scholar 

  32. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS. IEEE CS (1991)

    Google Scholar 

  33. Jovanovic, D., de Moura, L.: Solving non-linear arithmetic. ACM Commun. Comput. Algebra 46(3/4) (2012)

    Article  Google Scholar 

  34. Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis. In: UAI. AUAI Press (2018)

    Google Scholar 

  35. Katoen, J.P.: The probabilistic model checking landscape. In: LICS. ACM (2016)

    Google Scholar 

  36. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  37. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: QEST. IEEE CS (2012)

    Google Scholar 

  38. Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic verification of Herman’s self-stabilisation algorithm. Formal Asp. Comput. 24(4–6), 661–670 (2012). https://doi.org/10.1007/s00165-012-0227-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K.: Evaluating the reliability of NAND multiplexing with PRISM. IEEE Trans. CAD Integr. Circuits Syst. 24(10), 1629–1637 (2005)

    Article  Google Scholar 

  40. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A Greedy approach for the efficient repair of Stochastic models. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_21

    Chapter  Google Scholar 

  41. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_4

    Chapter  MATH  Google Scholar 

  42. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)

    Article  Google Scholar 

  43. Le Roux, S., Pérez, G.A.: The complexity of graph-based reductions for reachability in Markov decision processes. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 367–383. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_20

    Chapter  Google Scholar 

  44. Spel, J., Junges, S., Katoen, J.P.: Are parametric Markov chains monotonic? CoRR abs/1907.08491 (2019). extended version

    Google Scholar 

  45. Winkler, T., Junges, S., Pérez, G.A., Katoen, J.P.: On the complexity of reachability in parametric Markov decision processes. CoRR abs/1904.01503 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jip Spel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spel, J., Junges, S., Katoen, JP. (2019). Are Parametric Markov Chains Monotonic?. In: Chen, YF., Cheng, CH., Esparza, J. (eds) Automated Technology for Verification and Analysis. ATVA 2019. Lecture Notes in Computer Science(), vol 11781. Springer, Cham. https://doi.org/10.1007/978-3-030-31784-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31784-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31783-6

  • Online ISBN: 978-3-030-31784-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics