Skip to main content

Recent Advancements on the Role of Biologically Active Secondary Metabolites from Chaetomium

  • Chapter
  • First Online:
Recent Developments on Genus Chaetomium

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Chaetomium is one of the largest genera of saprobic ascomycetes with more than 300 species worldwide; the most common species are C. globosum and C. elatum. Many species in this genus are well known to produce a wide range of natural products; most of the products have a wide spectrum of biological activities, whilst some are toxigenic. Currently, there are more than 300 known bioactive metabolites produced by different Chaetomium spp. In this chapter, the most biologically important toxic metabolites of a variety of Chaetomium species are discussed. Secondary metabolites from Chaetomium have potential biotechnological applications with a market value beyond those in human health, medicine, industrial production, food, or agricultural industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham WR, Arfmann HA (1992) Rearranged tetrahydrofurans from Chaetomium cochlioides. Phytochemistry 31:2405–2408

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Edrada-Ebel R, Wray V, Müller WE, Lin W, Ebel R, Proksch P (2009) A new tetrahydrofuran derivative from the endophytic fungus Chaetomium sp. isolated from Otanthus maritimus. Z Naturforsch C 64:350–354

    Article  CAS  PubMed  Google Scholar 

  • Ariza MR, Larsen TO, Peterson BO, Duus JO, Barrero AF (2002) Penicillium digitatum metabolites on synthetic media and citrus fruits. J Agric Food Chem 50:6361–6365

    Article  CAS  PubMed  Google Scholar 

  • Baliah V, Jeyaraman R, Chandrasekaran L (1983) Synthesis of 2,6-disubstituted piperidines, oxanes, and thianes. Chem Rev 83:379–423

    Article  CAS  Google Scholar 

  • Beisswenger PJ, Howell SK, Smith K, Szwergold BS (2003) Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochem Biophys Acta 1637:98–106

    CAS  PubMed  Google Scholar 

  • Bitzer J (2005) Isolierung und Strukturaufklärung neuer Naturstoffe aus Bakterien und endophytischen Pilzen durch chemisches screening. Dissertation, University of Göttingen

    Google Scholar 

  • Bohlmann F, Ziesche J (1979) Ein ungewöhnliches tetrahydrofuranderivat aus Helichrysum aureo-nitens. Phytochemistry 18:664–665

    Article  CAS  Google Scholar 

  • Brewer D, Jerram W, Taylor A (1968) The production of cochliodinol and a related metabolite by Chaetomium species. Can J Microbiol 14:861–866

    Article  CAS  PubMed  Google Scholar 

  • Brewer D, Jerram WA, Meiler D, Taylor A (1970) The toxicity of cochliodinol, an antibiotic metabolite of Chaetomium spp. Can J Microbiol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  • Burrows BF (1967) A new fungal tetrahydrofuran. J Chem Soc Chem Commun 12:597–598

    Google Scholar 

  • Cole RJ, Kirksey JW, Cutler HG, Davis EE (1974) Toxic effects of oosporein from Chaetomium trilaterale. J Agric Food Chem 22:517–520

    Article  CAS  PubMed  Google Scholar 

  • Cutler HG (1984) Biologically active natural products from fungi: templates for tomorrow’s pesticides. In: Ory RL, Rittig FR (eds) Bioregulators, chemistry and uses. American Chemical Society, Washington, DC, pp 153–170

    Chapter  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Fiechter A (ed) History of modern biotechnology I, advances in biochemical engineering/biotechnology, vol 69. Springer, Berlin, pp 1–39. https://doi.org/10.1007/3-540-44964-7_1

    Chapter  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Meta 2:303–336

    CAS  Google Scholar 

  • Ding G, Song YC, Chen JR, Xu C, Ge HM, Wang XT, Tan RX (2006) Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J Nat Prod 69:302–304

    Article  CAS  PubMed  Google Scholar 

  • Dong JY, He HP, Shen YM, Zhang KQ (2005) Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J Nat Prod 68:1510–1513

    Article  CAS  PubMed  Google Scholar 

  • Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto H, Nozawa M, Okuyama E, Ishibashi M (2003) Six new constituents from an ascomycete, Chaetomium quadrangulatum, found in a screening study focused on monoamine oxidase inhibitory activity. Chem Pharm Bull 51(3):247–251

    Article  CAS  Google Scholar 

  • Fujimoto H, Sumino M, Okuyama E, Ishibashi M (2004) Immunomodulatory constituents from an ascomycete, Chaetomium seminudum. J Nat Prod 67:98–102

    Article  CAS  PubMed  Google Scholar 

  • Gardiner DM, Waring P, Howlett B (2005) The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. J Microbiol 151:1021–1032

    Article  CAS  Google Scholar 

  • Ge HM, Zhang WY, Ding G, Saparpakorn P, Song YC, Hannongbua S, Tan RX (2008) Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture. Chem Commun:5978–5980

    Google Scholar 

  • Ge HM, Zhang Q, Xu SH, Guo ZK, Song YC, Huang WY, Tan RX (2011) Chaetoglocins A-D, four new metabolites from the endophytic fungus Chaetomium globosum. Planta Med 77:277–280

    Article  CAS  PubMed  Google Scholar 

  • Geiger WB (1949) Chetomin, an antibiotic substance from Chaetomium cochliodes III. Composition and functional groups. Arch Biochem 21:125–131

    CAS  PubMed  Google Scholar 

  • Gloer JB (2007) Applications of fungal ecology in the search for new bioactive natural products. In: Kubicek CP, Druzhinina IS (eds) The mycota, vol IV, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Gurnani N, Mehta D, Gupta M, Mehta BK (2014) Natural products: source of potential drugs. Afr J Basic Appl Sci 6:171–186

    Google Scholar 

  • Hauser D, Zardin T (1972) Isolation of 6-hydroxymethyleugenin from Chaetomium minutum. Experientia 28:1114

    Article  CAS  Google Scholar 

  • Hauser D, Weber HP, Sigg HP (1970) Isolation and configuration of chaetocin. Helv Chim Acta 53:1061–1073

    Article  CAS  PubMed  Google Scholar 

  • He L, Zhong-Bin L, Dan T, Wen-Bo H, Qiang Z, Jin-Ming G (2018) Polyketides from two Chaetomium species and their biological functions. J Antibiot 71:677–681. https://doi.org/10.1038/s41429-018-0047-x

    Article  CAS  Google Scholar 

  • Hwang EI, Yun BS, Kim YK, Kwon BM, Kim HG, Lee HB, Bae KS, Kim SU (2000) Chaetoatrosin A, a novel chitin synthase II inhibitor produced by Chaetomium atrobrunneum F449. J Antibiot 53:248–255

    Article  CAS  Google Scholar 

  • Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, Arai M (1980) A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot 33(5):468–473

    Article  CAS  Google Scholar 

  • Jiao W, Feng Y, Blunt JW, Cole AL, Munro MH (2004) Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomium globosum. J Nat Prod 67:1722–1725

    Article  CAS  PubMed  Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Phonkerd N, Soytong K, Kongsaeree P, Suksamrarn A (2002) Antimycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. Planta Med 68:834–836

    Article  CAS  PubMed  Google Scholar 

  • Kawagishi H, Katsumi R, Sazawa T, Mizuno T, Hagiwara T, Nakamura T (1988) Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry 27:2777–2779

    Article  CAS  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–947. https://doi.org/10.1038/nrmicro1286

    Article  CAS  PubMed  Google Scholar 

  • Keyang L, Yisheng Z, Li L, Xuewei W, Gang D (2013) Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS.860.68). Molecules 18:10944–10952. https://doi.org/10.3390/molecules180910944

    Article  CAS  Google Scholar 

  • Khumkomkhet P, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K (2009) Antimalarial and cytotoxic depsidones from the fungus Chaetomium brasiliense. J Nat Prod 72:1487–1491

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Kadota S, Suehara H, Nishi A, Tubaki K (1981) Odorous metabolites of a fungus, Chaetomium globosum Kinze ex Fr. Identification of geosmin, a musty-smelling compound. Chem Pharm Bull 29:1782–1784

    Article  CAS  Google Scholar 

  • Kim JH, Lee CH (2009) Heptelidic acid, a sesquiterpene lactone, inhibits etoposide-induced apoptosis in human leukemia U937 cells. J Microbiol Biotechnol 19:787–791

    CAS  PubMed  Google Scholar 

  • Kingsland SR, Barrow RA (2009) Identification of chaetoviridin E from a cultured microfungus, Chaetomium sp. and structural reassignment of chaetoviridins B and D. Aust J Chem 62:269–274

    Article  CAS  Google Scholar 

  • Koyama K, Akiba M, Imaizumi T, Kinoshita K, Takahashi K, Suzuki A, Yano S, Horie S, Watanabe K (2002) Antinociceptive constituents of Auricularia polytricha. Planta Med 68:284–285

    Article  CAS  PubMed  Google Scholar 

  • Kubohara Y, Okamoto K, Tanaka Y, Asahi K, Sakurai A, Takahashi N (1993) Differanisole A, an inducer of the differentiation of friend leukemic cells, induces stalk cell differentiation in Dictyostelium discoideum. FEBS Lett 322:73–75

    Article  CAS  PubMed  Google Scholar 

  • Kumagai S, Narasaki R, Hasumi K (2008) Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. Biochem Biophys Res Commun 365:362–368

    Article  CAS  PubMed  Google Scholar 

  • Li GY, Li BG, Yang T, Yan JF, Liu GY, Zhang GL (2006) Chaetocochins A-C, epipolythiodioxopiperazines from Chaetomium cochliodes. J Nat Prod 69:1374–1376

    Article  CAS  PubMed  Google Scholar 

  • Li GY, Li BG, Yang T, Liu GY, Zhang GL (2008) Secondary metabolites from the fungus Chaetomium brasiliense. Helv Chim Acta 91:124–129

    Article  CAS  Google Scholar 

  • Li LM, Zou Q, Li GY (2010) Chromones from an ascomycete, Chaetomium aureus. Chin Chem Lett 21:1203–1205

    Article  CAS  Google Scholar 

  • Lloyd G, Robertson A, Sankey GB, Whalley WB (1955) The chemistry of fungi. Part XXV. Oosporein, a metabolite of Chaetomium aureum chivers. J Chem Soc:2163–2165

    Google Scholar 

  • Lösgen S, Schlörke O, Meindl K, Herbst-Irmer R, Zeeck A (2007) Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus. Eur J Org Chem 2007(13):2191–2196

    Article  CAS  Google Scholar 

  • Manning RO, Wyatt RD (1984) Comparative toxicity of Chaetomium contaminated corn and various chemical forms of oosporein in broiler chicks. Poult Sci 63:251–259

    Article  CAS  PubMed  Google Scholar 

  • Marwah RG, Fatope MO, Deadman ML, Al-Maqbali YM, Husband J (2007) Musanahol: a new aureonitol-related metabolite from a Chaetomium sp. Tetrahedron 63:8174–8180

    Article  CAS  Google Scholar 

  • Mason SF, Vane GW (1967) The circular dichroisrn and the stereochemistry of a new fungal tetrahydrofuran. J Chem Soc Chem Commun (12):598

    Google Scholar 

  • McInnes AG, Taylor A, Walter JA (1976) The structure of chetomin. J Am Chem Soc 98:6741–6741

    Article  CAS  PubMed  Google Scholar 

  • Meiler D, Taylor A (1971) The effect of cochliodinol, a metabolite of Chaetomium cochliodes, on the respiration of microsopores of Fusarium oxysporum. Can J Microbiol 17:83–86

    Article  CAS  PubMed  Google Scholar 

  • Müllbacher A, Waring P, Tiwari-Palni U, Eichner RD (1986) Structural relationship of epipolythiodioxopiperazines and their immunomodulating activity. Mol Immunol 23:231–235

    Article  PubMed  Google Scholar 

  • Muroga Y, Yamada T, Numata A, Tanaka R (2009) Chaetomugilins I-O, new potent cytotoxic metabolites from a marine-fish derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron 65:7580–7586

    Article  CAS  Google Scholar 

  • Nagaoka T, Nakata K, Kouno K, Ando T (2004) Antifungal activity of oosporein from an antagonistic fungus against Phytophthora infestans. Z Naturforsch C 59:302–304

    Article  CAS  PubMed  Google Scholar 

  • Nakao Y, Kuo J, Yoshida WY, Kelly M, Scheuer PJ (2003) More kapakahines from the marine sponge Cribrochalina olemda. Org Lett 5:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa M, Uehara T, Nomura Y (1997) Koningic acid (a potent glyceraldehyde-3-phosphate dehydrogenase inhibitor)-induced fragmentation and condensation of DNA in NG108-15 cells. J Neurochem 68:2493–2499

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KF, Gravesen S, Nielsen PA, Andersen B, Thrane U, Frisvad JC (1999) Production of mycotoxins on artificially and naturally infested building materials. Mycopathologia 145:43–56

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Swenson DC, Gloer JB, Wicklow DT, Dowd PF (1998) Chaetochalasin A: a new bioactive metabolite from Chaetomium brasiliense. Tetrahedron Lett 39:7633–7636

    Article  CAS  Google Scholar 

  • Oka H, Asahi K, Morishima H, Sanada M, Shiratori K, Iimura Y, Sakurai T, Uzawa J, Iwadare S, Takahashi N (1985) Differanisole A, a new differentiation inducing substance. J Antibiot 38:1100–1102

    Article  CAS  Google Scholar 

  • Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P (2008) Bis-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes CTh05. Tetrahedron 64:9636–9645

    Article  CAS  Google Scholar 

  • Pontius A, Krick A, Kehraus S, Brun R, König GM (2008) Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J Nat Prod 71:1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Powell JW, Whalley WB (1969) The chemistry of fungi. 58. Structures of colletodiol, a metabolite of Chaetomium funicola. J Chem Soc Perkin Trans 1:911–912

    Google Scholar 

  • Qin JC, Gao JM, Zhang YM, Yang SX, Bai MS, Ma YT, Laatsch H (2009) Polyhydroxylated steroids from an endophytic fungus, Chaetomium globosum ZY-22 isolated from Ginkgo biloba. Steroids 74:786–790

    Article  CAS  PubMed  Google Scholar 

  • Rether J, Erkel G, Anke T, Sterner O (2004) Inhibition of inducible TNF-alpha expression by oxaspirodion, a novel spiro-compound from the ascomycete Chaetomium subspirale. Biol Chem 385:829–834

    Article  CAS  PubMed  Google Scholar 

  • Royles BJL (1995) Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem Rev 95:1981–2001

    Article  CAS  Google Scholar 

  • Rui HJ, Shu X, Jun YL, Hui MG, Hui D, Chen X, Hai LZ, Ren XT (2006) Chaetominine, a cytotoxic alkaloid produced by endophytic Chaetomium sp. IFB-E015. Org Lett 8(25):5709–5712

    Article  CAS  Google Scholar 

  • Safe S, Taylor A (1972) Sporidesmins. Part XIII. Ovine 111-thrift in Nova Scotia. Part 11. The characterisation of chetomin, a toxic metabolite of Chaetomium cochliodes and Chaetomium globosum. J Chem Soc Perkin Trans 1:472–479

    Article  Google Scholar 

  • Saito M, Seto H, Yonehara H (1983) Biosynthesis of 2-(but-l,3-dienyl)-3-hydro-4-(penta-l,3-dienyl)-tetrahydrofuran, a metabolite of Chaetomium coarctatum. Agric Biol Chem 47:2935–2937

    CAS  Google Scholar 

  • Saito T, Suzuki Y, Koyama K, Natori S, Iitaka Y, Kinoshita T (1985) Chetracin A and chaetocins B and C, three new epipolythiodioxopiperazines from Chaetomium spp. Chem 26:4731–4734

    CAS  Google Scholar 

  • Saito T, Koyama K, Natori S, Iitaka Y (1988) Chetracin A, a new epipolythiodioxopiperazine having a tetrasulfide bridge from Chaetomium abuens and C. retardatum. Tetrahedron Lett Pharm Bull 36:1942–1956

    CAS  Google Scholar 

  • Schlörke O, Zeeck A (2006) Orsellides A–E: an example for 6-deoxyhexose derivatives produced by fungi. Eur J Org Chem 2006(4):1043–1049. https://doi.org/10.1002/ejoc.200500793

    Article  CAS  Google Scholar 

  • Sekita S (1983) Isocochliodinol and neocochliodinol, bis(3-indolyl)-benzoquinones from Chaetomium spp. Chem Pharm Bull 31:2998–3001

    Article  CAS  Google Scholar 

  • Sekita S, Yoshihira K, Natori S, Udagawa S, Muroi T, Sugiyama Y, Kurata H, Umeda M (1981) Mycotoxin production by Chaetomium spp. and related fungi. Can J Microbiol 27:766–772

    Article  CAS  PubMed  Google Scholar 

  • Seto H, Saito M, Uzawa J, Yonehara H (1979) Utilization of 13C -13C coupling in structural and biosynthetic studies. XII. biosynthesis of 2-(but-1,3-dienyl)-3-hydro-4-(penta-1,3-dienyl)-tetrahydrofuran, A metabolite of Chaetomium coarctaum. Heterocycles 13:247–253

    Article  CAS  Google Scholar 

  • Smetanina OF, Kuznetzova TA, Denisenko VA, Pivkin MV, Khudyakova YV, Gerasimenko AV, Popov DY, Il’in SG, Elyakov GB (2001) 3β-Methoxyolean-18-ene (miliacin) from the marine fungus Chaetomium olivaceum. Russ Chem Bull 50:2463–2465

    Article  CAS  Google Scholar 

  • Stadler M, Keller NP (2008) Paradigm shifts in fungal secondary metabolite research. Mycol Res 112(2):127–130

    Article  CAS  PubMed  Google Scholar 

  • Sutton DA, Fothergill A, Rinaldi MG (1998) Guide to clinically significant fungi. Williams and Wilkins, Baltimore

    Google Scholar 

  • Suzuki T, Oka H, Okura A, Asahi K, Takahashi N (1986) In vitro and in vivo effects of differanisole A on some tumor cells. J Antibiot 39:869–871

    Article  CAS  Google Scholar 

  • Takahashi M, Koyama K, Natori S (1990) Four new azaphilones from Chaetomium globosum var. flavo-viridae. Chem Pharm Bull 38:625–628

    Google Scholar 

  • Tanaka Y, Shiomi K, Kamei K, Sugoh-Hagino M, Enomoto Y, Fang F, Yamaguchi Y, Masuma R, Zhang CG, Zhang XW, Omura S (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. J Antibiot 51:153–160

    Article  CAS  Google Scholar 

  • Teigo A, Shuntaro M, Naoki S, Tohru T, Kenji M, Hiroaki S, Tomoji O, Yoshiteru O (2012) Structural diversity of new c13-polyketides produced by Chaetomium mollipilium cultivated in the presence of a nad þ-dependent histone deacetylase inhibitor. Org Lett 14(21):5456–5459

    Article  CAS  Google Scholar 

  • Terry BJ, Liu WC, Cianci CW, Proszynski E, Fernandes P, Bush K, Meyers E (1992) Inhibition of herpes simplex virus type 1 DNA polymerase by the natural product oosporein. J Antibiot 45:286–288

    Article  CAS  Google Scholar 

  • Thohinung S, Kanokmedhakul S, Kanokmedhakul K, Kukongviriyapan V, Tusskorn O, Soytong K (2010) Cytotoxic 10-(indol-3-yl)-[13]cytochalasans from the fungus Chaetomium elatum ChE01. Arch Pharm Res 33:1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Tibodeau JD, Benson LM, Isham CR, Owen WG, Bible KC (2009) The anticancer agent chaetocin is a competitive substrate and inhibitor of thioredoxin reductase. Antioxid Redox Signal 11:1097–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turbyville TJ, Wijeratne EM, Liu MX, Burns AM, Seliga CJ, Luevano LA, David CL, Faeth SH, Whitesell L, Gunatilaka AAL (2006) Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. J Nat Prod 69:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udagawa S, Muroi T, Kurata H, Sekita S, Yoshihira K, Natori S, Umeda M (1979) The production of chaetoglobosins, sterigmatocystin, O-methylsterigmatocystin, and chaetocin by Chaetomium spp. and related fungi. Can J Microbiol 25:170–177

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R, Proksch P, Wang BG (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Xu Y, Maine EA, Wijeratne EM, Espinosa-Artiles P, Gunatilaka AA, Molnár I (2008) Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem Biol 15:1328–1338

    Article  CAS  PubMed  Google Scholar 

  • Weindling R, Emerson OH (1936) The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology 26:1068–1070

    CAS  Google Scholar 

  • Wijeratne EMK, Turbyville TJ, Fritz A, Whitesell L, Gunatilaka AAL (2006) A new dihydroxanthenone from a plant associated strain of the fungus Chaetomium globosum demonstrates anticancer activity. Bioorg Med Chem 14:7917–7923

    Article  CAS  PubMed  Google Scholar 

  • Wu ZJ, Li GY, Fang DM, Qi HY, Ren WJ, Zhang GL (2008) Analysis of epipolythiodioxopiperazines in fungus Chaetomium cochliodes using HPLC-ESI-MS/MS/MS. Anal Chem 80:217–226

    Article  CAS  PubMed  Google Scholar 

  • Xu GB, Li LM, Yang T, Zhang GL, Li GY (2012) Chaetoconvosins A and B, alkaloids with new skeleton from fungus Chaetomium convolutum. Org Lett 14(23):6025–6055

    Article  CAS  Google Scholar 

  • Yamada T, Muroga Y, Tanaka R (2009) New azaphilones, secochaetomugilins A and D, produced by a marine-fish-derived Chaetomium globosum. Mar Drugs 7:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki M, Fujimoto H, Okuyama E (1978) Structure determination of six fungal metabolites, tryptoquivaline E, F, G, H, I and J from Aspergillus fumigatus. Chem Pharm Bull 26:111–117

    Article  CAS  Google Scholar 

  • Yamori T, Matsunaga A, Sato S, Yamazaki K, Komi A, Ishizu K, Mita I, Edatsugi H, Matsuba Y, Takezawa K, Nakanishi O, Kohno H, Nakajima Y, Komatsu H, Andoh T, Tsuruo T (1999) Potent antitumor activity of MS-247, a novel DNA minor groove binder, evaluated by an in vitro and in vivo human cancer cell line panel. Cancer Res 59:4042–4049

    CAS  PubMed  Google Scholar 

  • Yang SX, Gao JM, Zhang Q, Laatsch H (2011) Toxic polyketides produced by Fusarium sp., an endophytic fungus isolated from Melia azedarach. Bioorg Med Chem Lett 21:1887–1889

    Article  CAS  PubMed  Google Scholar 

  • Yeung BKS, Nakao Y, Kinnel RB, Carney JR, Yoshida WY, Scheuer PJ, Kelly-Borges M (1996) The kapakahines, cyclic peptides from the marine sponge Cribrochalina olemda. J Org Chem 61:7168–7173

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ge HM, Jiao RH, Li J, Peng H, Wang YR, Wu JH, Song YC, Tan RX (2010) Cytotoxic chaetoglobosins from the endophyte Chaetomium globosum. Planta Med 76:1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Li HQ, Zong SC, Gao JM, Zhang AL (2012) Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini Rev Med Chem 12(2):127–148

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamed, S.R., Abdel-Azeem, A.M., Dar, P.M. (2020). Recent Advancements on the Role of Biologically Active Secondary Metabolites from Chaetomium. In: Abdel-Azeem, A. (eds) Recent Developments on Genus Chaetomium . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-31612-9_6

Download citation

Publish with us

Policies and ethics