Skip to main content

Stem Cells in Psychiatry

  • Chapter
  • First Online:
Stem Cells

Abstract

The development of regenerative medicine has provided new perspectives in many scientific fields, including psychiatry. Stem cell research is getting us closer to discovering the biological foundation of mental disorders. In this chapter, we consider the information relating to stem cells and factors involved in their trafficking in peripheral blood in some psychiatric disorders (major depressive disorder, bipolar disorder, schizophrenia, anxiety disorder, and alcohol dependence). The authors also include the implementation of current research regarding neurogenesis in adult brain and induced pluripotent stem cells in investigating concerns in etiopathogenesis of mental disorders as well as the implication of research for treatment of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamiak M, Abdelbaset-Ismail A, Suszynska M, Abdel-Latif A, Ratajczak J, Ratajczak MZ (2017) Novel evidence that the mannan-binding lectin pathway of complement activation plays a pivotal role in triggering mobilization of hematopoietic stem/progenitor cells by activation of both the complement and coagulation cascades. Leukemia 31(1):262–265. https://doi.org/10.1038/leu.2016.278

    Article  CAS  PubMed  Google Scholar 

  2. Adegbola A, Bury LA, Fu C, Zhang M, Wynshaw-Boris A (2017) Concise review: induced pluripotent stem cell models for neuropsychiatric diseases. Stem Cells Transl Med 6(12):2062–2070. https://doi.org/10.1002/sctm.17-0150

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alberini CM, Cruz E, Descalzi G, Bessières B, Gao V (2018) Astrocyte glycogen and lactate: new insights into learning and memory mechanisms. Glia 66(6):1244–1262. https://doi.org/10.1002/glia.23250

    Article  PubMed  Google Scholar 

  4. Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591

    Article  CAS  Google Scholar 

  5. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  Google Scholar 

  6. Audet MC, Anisman H (2013) Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front Cell Neurosci 7:68. https://doi.org/10.3389/fncel.2013.00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beckervordersandforth R (2017) Mitochondrial metabolism-mediated regulation of adult neurogenesis. Brain Plast 3(1):73–87. https://doi.org/10.3233/BPL-170044

    Article  PubMed  PubMed Central  Google Scholar 

  8. Beckervordersandforth R, Ebert B, Schäffner I, Moss J, Fiebig C, Shin J, Moore DL, Ghosh L, Trinchero MF, Stockburger C, Friedland K, Steib K, von Wittgenstein J, Keiner S, Redecker C, Hölter SM, Xiang W, Wurst W, Jagasia R, Schinder AF, Ming GL, Toni N, Jessberger S, Song H, Lie DC (2017) Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93(6):1518. https://doi.org/10.1016/j.neuron.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bergmann O, Spalding KL, Frisén J (2015) Adult Neurogenesis in Humans. Cold Spring Harb Perspect Biol 7(7):a018994. https://doi.org/10.1101/cshperspect.a018994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bocchio Chiavetto L, Boin F, Zanardini R, Popoli M, Michelato A, Bignotti S, Tura GB, Gennarelli M (2002) Association between promoter polymorphic haplotypes of interleukin-10 gene and schizophrenia. Biol Psychiatry 51(6):480–484

    Article  Google Scholar 

  11. Bolijn S, Lucassen PJ (2015) How the body talks to the brain; peripheral mediators of physical activity-induced proliferation in the adult Hippocampus. Brain Plast 1(1):5–27. https://doi.org/10.3233/BPL-150020

    Article  PubMed  PubMed Central  Google Scholar 

  12. Borsini A, Zunszain PA (2016) Advances in stem cells biology: new approaches to understand depression. In: Pfaff D, Christen Y (eds) Stem cells in neuroendocrinology [Internet]. Springer, Cham

    Google Scholar 

  13. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473(7346):221–225. https://doi.org/10.1038/nature09915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, Beaumont KG, Kim HJ, Topol A, Ladran I, Abdelrahim M, Matikainen-Ankney B, Chao SH, Mrksich M, Rakic P, Fang G, Zhang B, Yates JR 3rd, Gage FH (2015) Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry 20(3):361–368. https://doi.org/10.1038/mp.2014.22

    Article  CAS  PubMed  Google Scholar 

  15. Chancey JH, Adlaf EW, Sapp MC, Pugh PC, Wadiche JI, Overstreet-Wadiche LS (2013) GABA depolarization is required for experience-dependent synapse unsilencing in adult-born neurons. J Neurosci 33(15):6614–6622. https://doi.org/10.1523/JNEUROSCI.0781-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Charvet CJ, Finlay BL (2018) Comparing adult hippocampal neurogenesis across species: translating time to predict the tempo in humans. Front Neurosci 12:706. https://doi.org/10.3389/fnins.2018.00706. eCollection 2018

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chesnokova V, Pechnick RN, Wawrowsky K (2016) Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav Immun 58:1–8. https://doi.org/10.1016/j.bbi.2016.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheung HO, Zhang X, Ribeiro A, Mo R, Makino S, Puviindran V, Law KK, Briscoe J, Hui CC (2009) The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2(76):ra29. https://doi.org/10.1126/scisignal.2000405

    Article  CAS  PubMed  Google Scholar 

  19. Coulthard LG, Hawksworth OA, Li R, Balachandran A, Lee JD, Sepehrband F, Kurniawan N, Jeanes A, Simmons DG, Wolvetang E, Woodruff TM (2017) Complement C5aR1 signaling promotes polarization and proliferation of embryonic neural progenitor cells through PKCζ. J Neurosci 37(22):5395–5407. https://doi.org/10.1523/JNEUROSCI.0525-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Darcy MJ, Trouche S, Jin SX, Feig LA (2014) Ras-GRF2 mediates long-term potentiation, survival, and response to an enriched environment of newborn neurons in the hippocampus. Hippocampus 24(11):1317–1329. https://doi.org/10.1002/hipo.22313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dasdemir S, Kucukali CI, Bireller ES, Tuzun E, Cakmakoglu B (2016) Chemokine gene variants in schizophrenia. Nord J Psychiatry 70(6):407–412. https://doi.org/10.3109/08039488.2016.1141981

    Article  PubMed  Google Scholar 

  22. Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT (2016) Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol 42(7):621–638. https://doi.org/10.1111/nan.12337. Epub 2016 Aug 28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Denny KJ, Coulthard LG, Jeanes A, Lisgo S, Simmons DG, Callaway LK, Wlodarczyk B, Finnell RH, Woodruff TM, Taylor SM (2013) C5a receptor signalling prevents folate deficiency-induced neural tube defects in mice. J Immunol 190(7):3493–3499. https://doi.org/10.4049/jimmunol.1203072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ehm O, Göritz C, Covic M, Schäffner I, Schwarz TJ, Karaca E, Kempkes B, Kremmer E, Pfrieger FW, Espinosa L, Bigas A, Giachino C, Taylor V, Frisén J, Lie DC (2010) RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci 30(41):13794–13807. https://doi.org/10.1523/JNEUROSCI.1567-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eisinger BE, Zhao X (2018) Identifying molecular mediators of environmentally enhanced neurogenesis. Cell Tissue Res 371(1):7–21. https://doi.org/10.1007/s00441-017-2718-5

    Article  CAS  PubMed  Google Scholar 

  26. Eliwa H, Belzung C, Surget A (2017) Adult hippocampal neurogenesis: is it the alpha and omega of antidepressant action? Biochem Pharmacol 141:86–99. https://doi.org/10.1016/j.bcp.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  27. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  CAS  Google Scholar 

  28. Fagan K, Crider A, Ahmed AO, Pillai A (2017) Complement C3 expression is decreased in autism Spectrum disorder subjects and contributes to behavioral deficits in rodents. Mol Neuropsychiatry 3(1):19–27. https://doi.org/10.1159/000465523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fanibunda SE, Desouza LA, Kapoor R, Vaidya RA, Vaidya VA (2018) Thyroid hormone regulation of adult neurogenesis. Vitam Horm 106:211–251. https://doi.org/10.1016/bs.vh.2017.04.006

    Article  PubMed  Google Scholar 

  30. Ferensztajn-Rochowiak E, Kucharska-Mazur J, Samochowiec J, Ratajczak MZ, Michalak M, Rybakowski JK. The effect of long-term lithium treatment of bipolar disorder on stem cells circulating in peripheral blood. World J Biol Psychiatry. 2017;18(1):54–62. https://doi.org/10.3109/15622975.2016.1174301

    Article  Google Scholar 

  31. Gorelik A, Sapir T, Haffner-Krausz R, Olender T, Woodruff TM, Reiner O (2017) Developmental activities of the complement pathway in migrating neurons. Nat Commun 8:15096. https://doi.org/10.1038/ncomms15096

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hawksworth OA, Coulthard LG, Mantovani S, Woodruff TM (2018) Complement in stem cells and development. Semin Immunol 37:74–84. https://doi.org/10.1016/j.smim.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi Y, Jinnou H, Sawamoto K, Hitoshi S (2018) Adult neurogenesis and its role in brain injury and psychiatric diseases. J Neurochem 147(5):584–594. https://doi.org/10.1111/jnc.14557

    Article  CAS  PubMed  Google Scholar 

  34. Homem CCF, Steinmann V, Burkard TR, Jais A, Esterbauer H, Knoblich JA (2014) Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 158(4):874–888. https://doi.org/10.1016/j.cell.2014.06.024

    Article  CAS  PubMed  Google Scholar 

  35. Hooshmand MJ, Nguyen HX, Piltti KM, Benavente F, Hong S, Flanagan L, Uchida N, Cummings BJ, Anderson AJ (2017) Neutrophils induce astroglial differentiation and migration of human neural stem cells via C1q and C3a synthesis. J Immunol 199(3):1069–1085. https://doi.org/10.4049/jimmunol.1600064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Horowitz MA, Wertz J, Zhu D, Cattaneo A, Musaelyan K, Nikkheslat N, Thuret S, Pariante CM, Zunszain PA (2014) Antidepressant compounds can be both pro- and anti-inflammatory in human hippocampal cells. Int J Neuropsychopharmacol 18(3). pii: pyu076.https://doi.org/10.1093/ijnp/pyu076

    Article  Google Scholar 

  37. Ihunwo AO, Tembo LH, Dzamalala C (2016) The dynamics of adult neurogenesis in human hippocampus. Neural Regen Res 11(12):1869–1883. https://doi.org/10.4103/1673-5374.195278

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ishii T, Hattori K, Miyakawa T, Watanabe K, Hidese S, Sasayama D, Ota M, Teraishi T, Hori H, Yoshida S, Nunomura A, Nakagome K, Kunugi H (2018) Increased cerebrospinal fluid complement C5 levels in major depressive disorder and schizophrenia. Biochem Biophys Res Commun 497(2):683–688. https://doi.org/10.1016/j.bbrc.2018.02.131

    Article  CAS  PubMed  Google Scholar 

  39. Jacobs BM (2015) A dangerous method? The use of induced pluripotent stem cells as a model for schizophrenia. Schizophr Res 168(1–2):563–568. https://doi.org/10.1016/j.schres.2015.07.005

    Article  PubMed  Google Scholar 

  40. Jabłoński M, Kucharska-Mazur J, Tarnowski M, Dołęgowska B, Pędziwiatr D, Kubiś E, Budkowska M, Sałata D, Pełka Wysiecka J, Kazimierczak A, Reginia A, Ratajczak MZ, Samochowiec J. Mobilization of Peripheral Blood Stem Cells and Changes in the Concentration of Plasma Factors Influencing their Movement in Patients with Panic Disorder. Stem Cell Rev. 2017;13(2):217–225. https://doi.org/10.1007/s12015-016-9700-6

    Article  Google Scholar 

  41. Jang S, Kim D, Lee Y, Moon S, Oh S. Modulation of sphingosine 1-phosphate and tyrosine hydroxylase in the stress-induced anxiety. Neurochem Res. 2011;36(2):258–67. https://doi.org/10.1007/s11064-010-0313-1

    Article  Google Scholar 

  42. Jobe EM, Zhao X. DNA Methylation and Adult Neurogenesis. Brain Plast. 2017;3(1):5–26. https://doi.org/10.3233/BPL-160034

    Article  Google Scholar 

  43. Kim YK, Na KS (2017) Neuroprotection in schizophrenia and its therapeutic implications. Psychiatry Investig 14(4):383–391. https://doi.org/10.4306/pi.2017.14.4.383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim HJ, Kim W, Kong SY (2013) Antidepressants for neuro-regeneration: from depression to Alzheimer’s disease. Arch Pharm Res 36(11):1279–1290. https://doi.org/10.1007/s12272-013-0238-8

    Article  CAS  PubMed  Google Scholar 

  45. Kin K, Yasuhara T, Borlongan CV, Date I (2018) Encapsulated stem cells ameliorate depressive-like behavior via growth factor secretion. Brain Circ 4(3):128–132. https://doi.org/10.4103/bc.bc_17_18

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kulkarni VA, Jha S, Vaidya VA (2002) Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur J Neurosci 16(10):2008–2012

    Article  Google Scholar 

  47. Kucharska-Mazur J, Tarnowski M, Dołęgowska B, Budkowska M, Pędziwiatr D, Jabłoński M, Pełka-Wysiecka J, Kazimierczak A, Ratajczak MZ, Samochowiec J. Novel evidence for enhanced stem cell trafficking in antipsychotic-naïve subjects during their first psychotic episode. J Psychiatr Res. 2014 Feb;49:18–24. https://doi.org/10.1016/j.jpsychires.2013.10.016

    Article  Google Scholar 

  48. Larson TA (2018) Sex steroids, adult neurogenesis, and inflammation in CNS homeostasis, degeneration, and repair. Front Endocrinol (Lausanne) 9:205. https://doi.org/10.3389/fendo.2018.00205

    Article  PubMed Central  Google Scholar 

  49. Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15(5):700–702. https://doi.org/10.1038/nn.3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lieberman R, Kranzler HR, Levine ES, Covault J. Examining the effects of alcohol on GABAA receptor mRNA expression and function in neural cultures generated from control and alcohol dependent donor induced pluripotent stem cells. Alcohol. 2018;66:45–53. https://doi.org/10.1016/j.alcohol.2017.08.005

    Article  CAS  Google Scholar 

  51. Lin R, Iacovitti L (2015) Classic and novel stem cell niches in brain homeostasis and repair. Brain Res 1628(Pt B):327–342. https://doi.org/10.1016/j.brainres.2015.04.029

    Article  CAS  PubMed  Google Scholar 

  52. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL, Song H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323(5917):1074–1077. https://doi.org/10.1126/science.1166859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Magnusson JP, Göritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, Kokaia Z, Frisén J (2014) A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346(6206):237–241. https://doi.org/10.1126/science.346.6206.237

    Article  CAS  PubMed  Google Scholar 

  54. Malberg JE, Platt B, Rizzo SJ, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S (2007) Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology 32(11):2360–2368

    Article  CAS  Google Scholar 

  55. Miyamoto C, Yoshida M, Yoshikawa M, Mizushige T, Ohinata K. Complement C5a exhibits anxiolytic-like activity via the prostaglandin D2-DP1 receptor system coupled to adenosine A2A and GABAA receptors. Prostaglandins Other Lipid Mediat. 2012;98(1-2):17–22. https://doi.org/10.1016/j.prostaglandins.2012.03.004

    Article  CAS  Google Scholar 

  56. Migaud M, Butruille L, Duittoz A, Pillon D, Batailler M (2016) Adult neurogenesis and reproductive functions in mammals. Theriogenology 86(1):313–323. https://doi.org/10.1016/j.theriogenology.2016.04.044. Epub 2016 Apr 21

    Article  PubMed  Google Scholar 

  57. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. https://doi.org/10.1016/j.neuron.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Donovan A, Rush G, Hoatam G, Hughes BM, McCrohan A, Kelleher C, O’Farrelly C, Malone KM (2013) Suicidal ideation is associated with elevated inflammation in patients with major depressive disorder. Depress Anxiety 30(4):307–314. https://doi.org/10.1002/da.22087

    Article  CAS  PubMed  Google Scholar 

  59. Nagy LE. The Role of Innate Immunity in Alcoholic Liver Disease. Alcohol Res. 2015;37(2):237–50.

    Google Scholar 

  60. Paulsen Bda S, de Moraes MR, Galina A, Souza da Silveira M, dos Santos Souza C, Drummond H, Nascimento Pozzatto E, Silva H Jr, Chicaybam L, Massuda R, Setti-Perdigão P, Bonamino M, Belmonte-de-Abreu PS, Castro NG, Brentani H, Rehen SK (2012) Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant 21(7):1547–1559

    Article  Google Scholar 

  61. Peng L, Bonaguidi MA (2018) Function and dysfunction of adult hippocampal neurogenesis in regeneration and disease. Am J Pathol 188(1):23–28. https://doi.org/10.1016/j.ajpath.2017.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pérez-Domínguez M, Tovar-Y-Romo LB, Zepeda A (2018) Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior. Rev Neurosci 29(1):1–20. https://doi.org/10.1515/revneuro-2017-0024

    Article  CAS  PubMed  Google Scholar 

  63. Presumey J, Bialas AR, Carroll MC (2017) Complement system in neural synapse elimination in development and disease. Adv Immunol 135:53–79. https://doi.org/10.1016/bs.ai.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  64. Rahpeymai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson AK, Zwirner J, Wetsel RA, Gerard C, Pekny M, Pekna M (2006) Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J 25(6):1364–1374

    Article  CAS  Google Scholar 

  65. Rai KS, Hattiangady B, Shetty AK (2007) Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur J Neurosci 26(7):1765–1779

    Article  Google Scholar 

  66. Reginia A, Kucharska-Mazur J, Jabłoński M, Budkowska M, Dołęgowska B, Sagan L, Misiak B, Ratajczak MZ, Rybakowski JK, Samochowiec J. Assessment of Complement Cascade Components in Patients With Bipolar Disorder. Front Psychiatry. 2018 Nov 27;9:614. https://doi.org/10.3389/fpsyt.2018.00614. eCollection 2018.

  67. Ristevska-Dimitrovska G, Shishkov R, Gerazova VP, Vujovik V, Stefanovski B, Novotni A, Marinov P, Filov I (2013) Different serum BDNF levels in depression: results from BDNF studies in FYR Macedonia and Bulgaria. Psychiatr Danub 25(2):123–127

    CAS  PubMed  Google Scholar 

  68. Robicsek O, Karry R, Petit I, Salman-Kesner N, Müller FJ, Klein E, Aberdam D, Ben-Shachar D (2013) Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 18(10):1067–1076. https://doi.org/10.1038/mp.2013.67

    Article  CAS  PubMed  Google Scholar 

  69. Santos Sória LD, Moura Gubert CD, Ceresér KM, Gama CS, Kapczinski F (2012) Increased serum levels of C3 and C4 in patients with schizophrenia compared to eutymic patients with bipolar disorder and healthy. Braz J Psychiatry 34(1):119–120

    Article  Google Scholar 

  70. Schoenfeld TJ, Cameron HA (2015) Adult neurogenesis and mental illness. Neuropsychopharmacology 40(1):113–128. https://doi.org/10.1038/npp.2014.230

    Article  PubMed  Google Scholar 

  71. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly MJ, Carroll MC, Stevens B, SA MC (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530(7589):177–183. https://doi.org/10.1038/nature16549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Serafini G, Hayley S, Pompili M, Dwivedi Y, Brahmachari G, Girardi P, Amore M (2014) Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets? CNS Neurol Disord Drug Targets 13(10):1708–1721

    Article  Google Scholar 

  73. Seshadri M, Banerjee D, Viswanath B, Ramakrishnan K, Purushottam M, Venkatasubramanian G, Jain S (2017) Cellular models to study schizophrenia: a systematic review. Asian J Psychiatr 25:46–53. https://doi.org/10.1016/j.ajp.2016.10.015

    Article  PubMed  Google Scholar 

  74. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22(8):3251–3261

    Article  CAS  Google Scholar 

  75. Smith LK, He Y, Park JS, Bieri G, Snethlage CE, Lin K, Gontier G, Wabl R, Plambeck KE, Udeochu J, Wheatley EG, Bouchard J, Eggel A, Narasimha R, Grant JL, Luo J, Wyss-Coray T, Villeda SA (2015) β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med 21(8):932–937. https://doi.org/10.1038/nm.3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sominsky L, Jasoni CL, Twigg HR, Spencer SJ (2018) Hormonal and nutritional regulation of postnatal hypothalamic development. J Endocrinol 237(2):R47–R64. https://doi.org/10.1530/JOE-17-0722. Epub 2018 Mar 15

    Article  CAS  PubMed  Google Scholar 

  77. Stuart MJ, Baune BT (2014) Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev 42:93–115. https://doi.org/10.1016/j.neubiorev.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  78. Suzuki H, Kanagawa D, Nakazawa H, Tawara-Hirata Y, Kogure Y, Shimizu-Okabe C, Takayama C, Ishikawa Y, Shiosaka S (2014) Role of neuropsin in parvalbumin immunoreactivity changes in hippocampal basket terminals of mice reared in various environments. Front Cell Neurosci 8:420. https://doi.org/10.3389/fncel.2014.00420

    Article  PubMed  PubMed Central  Google Scholar 

  79. Toda T, Parylak SL, Linker SB, Gage FH (2019) The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 24(1):67–87. https://doi.org/10.1038/s41380-018-0036-2

    Article  CAS  PubMed  Google Scholar 

  80. Vadodaria KC, Stern S, Marchetto MC, Gage FH (2018) Serotonin in psychiatry: in vitro disease modeling using patient-derived neurons. Cell Tissue Res 371(1):161–170. https://doi.org/10.1007/s00441-017-2670-4

    Article  CAS  PubMed  Google Scholar 

  81. Warner-Schmidt JL, Duman RS (2007) VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci U S A 104(11):4647–4652

    Article  CAS  Google Scholar 

  82. Xavier JM, Rodrigues CM, Sola S (2016) Mitochondria: major regulators of neural development. Neuroscientist 22(4):346–358. https://doi.org/10.1177/1073858415585472

    Article  CAS  PubMed  Google Scholar 

  83. Yagi S, Galea LAM (2019) Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology 44(1):200–213. https://doi.org/10.1038/s41386-018-0208-4

    Article  PubMed  Google Scholar 

  84. Yanpallewar SU, Barrick CA, Palko ME, Fulgenzi G, Tessarollo L (2012) Tamalin is a critical mediator of electroconvulsive shock-induced adult neuroplasticity. J Neurosci 32(7):2252–2262. https://doi.org/10.1523/JNEUROSCI.5493-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zanardini R, Bocchio-Chiavetto L, Scassellati C, Bonvicini C, Tura GB, Rossi G, Perez J, Gennarelli M (2003) Association between IL-1beta -511C/T and IL-1RA (86bp)n repeats polymorphisms and schizophrenia. J Psychiatr Res 37(6):457–462

    Article  Google Scholar 

  86. Zheng LS, Hitoshi S, Kaneko N, Takao K, Miyakawa T, Tanaka Y, Xia H, Kalinke U, Kudo K, Kanba S, Ikenaka K, Sawamoto K (2014) Mechanisms for interferon-α-induced depression and neural stem cell dysfunction. Stem Cell Reports 3(1):73–84. https://doi.org/10.1016/j.stemcr.2014.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Kucharska-Mazur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kucharska-Mazur, J., Ratajczak, M.Z., Samochowiec, J. (2019). Stem Cells in Psychiatry. In: Ratajczak, M. (eds) Stem Cells. Advances in Experimental Medicine and Biology, vol 1201. Springer, Cham. https://doi.org/10.1007/978-3-030-31206-0_8

Download citation

Publish with us

Policies and ethics