Skip to main content

Chemistry of Black Phosphorus

  • Chapter
  • First Online:
Black Phosphorus

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Black phosphorus (BP), a rediscovered one-element two-dimensional (2D) nanomaterial, has been intensively explored in the past few years. Of particular interest is its single-layer structure, called phosphorene. Understanding the chemistry of BP can substantially help in the development of BP-based practical devices. This chapter provides an overview of various aspects of BP chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

AFM:

Atomic force microscopy

ARPES:

Angle-resolved photoemission spectroscopy

BE:

Binding energy

BCS:

Bardeen–Cooper–Schrieffer

BP:

Black phosphorus

h-BN:

Hexagonal boron nitride

PDI:

Perylene bisimide

PL:

Photoluminescence

RP:

Red phosphorus

RPA:

Random phase approximation

TCNQ:

Tetracyano-p-quinodimethane

TMD:

Transition metal dichalcogenide

TOF-ND:

Time-of-flight neutron powder diffraction

vdW:

Van der Waals

VP:

Violet Phosphorus

WF:

Wave function

WP:

White phosphorus

ZT:

The highest figure of merit

References

  1. Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914). https://doi.org/10.1021/ja02184a002

    Article  CAS  Google Scholar 

  2. Rodin, A.S., Carvalho, A., Castro Neto, A.H.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112(17), 176801 (2014). https://doi.org/10.1103/PhysRevLett.112.176801

    Article  CAS  Google Scholar 

  3. Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1):5 (2017). https://doi.org/10.1038/s41699-017-0007-5

  4. Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316681619.023

  5. Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016). https://doi.org/10.1002/wcms.1234

    Article  CAS  Google Scholar 

  6. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z

    Article  CAS  Google Scholar 

  7. Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a

    Article  CAS  Google Scholar 

  8. Ghashghaee, M., Ghambarian, M.: Adsorption of toxic mercury, lead, cadmium, and arsenic ions on black phosphorous nanosheet: first-principles calculations. Struct. Chem. 30(1), 85–96 (2019). https://doi.org/10.1007/s11224-018-1173-6

    Article  CAS  Google Scholar 

  9. Hirsch, A., Hauke, F.: Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018). https://doi.org/10.1002/anie.201708211

    Article  CAS  Google Scholar 

  10. Abellán, G., Wild, S., Lloret, V., Scheuschner, N., Gillen, R., Mundloch, U., Maultzsch, J., Varela, M., Hauke, F., Hirsch, A.: Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139(30), 10432–10440 (2017). https://doi.org/10.1021/jacs.7b04971

    Article  CAS  Google Scholar 

  11. Grayfer, E.D., Kozlova, M.N., Fedorov, V.E.: Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv. Coll. Interface Sci. 245, 40–61 (2017). https://doi.org/10.1016/j.cis.2017.04.014

    Article  CAS  Google Scholar 

  12. Yasaei, P., Kumar, B., Foroozan, T., Wang, C., Asadi, M., Tuschel, D., Indacochea, J.E., Klie, R.F., Salehi-Khojin, A.: High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27(11), 1887–1892 (2015). https://doi.org/10.1002/adma.201405150

    Article  CAS  Google Scholar 

  13. Favron, A., Gaufrès, E., Fossard, F., Phaneuf-L’Heureux, A.-L., Tang, N.Y.W., Lévesque, P.L., Loiseau, A., Leonelli, R., Francoeur, S., Martel, R.: Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826 (2015). https://doi.org/10.1038/nmat4299

    Article  CAS  Google Scholar 

  14. Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016). https://doi.org/10.1002/anie.201604784

    Article  CAS  Google Scholar 

  15. Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017). https://doi.org/10.1039/c7cs00021a

    Article  CAS  Google Scholar 

  16. Hultgren, R., Gingrich, N.S., Warren, B.E.: The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3(6), 351–355 (1935). https://doi.org/10.1063/1.1749671

    Article  CAS  Google Scholar 

  17. Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017). https://doi.org/10.1080/10408436.2016.1182469

    Article  CAS  Google Scholar 

  18. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458

    Article  CAS  Google Scholar 

  19. Chowdhury, C., Datta, A.: Exotic physics and chemistry of two-dimensional phosphorus: phosphorene. J. Phys. Chem. Lett. 8(13), 2909–2916 (2017). https://doi.org/10.1021/acs.jpclett.7b01290

    Article  CAS  Google Scholar 

  20. Samuel Reich, E.: Phosphorene excites materials scientists. Nat. News 506(7486), 19 (2014)

    Article  CAS  Google Scholar 

  21. Morita, A.: Semiconducting black phosphorus. Appl. Phys. A 39(4), 227–242 (1986). https://doi.org/10.1007/bf00617267

    Article  Google Scholar 

  22. Shulenburger, L., Baczewski, A.D., Zhu, Z., Guan, J., Tománek, D.: The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 15(12), 8170–8175 (2015). https://doi.org/10.1021/acs.nanolett.5b03615

    Article  CAS  Google Scholar 

  23. Cai, Y., Zhang, G., Zhang, Y.-W.: Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014). https://doi.org/10.1038/srep06677

    Article  CAS  Google Scholar 

  24. Graziano, G., Klimeš, J., Fernandez-Alonso, F., Michaelides, A.: Improved description of soft layered materials with van der Waals density functional theory. J. Phys.: Condens. Matter 24(42), 424216 (2012). https://doi.org/10.1088/0953-8984/24/42/424216

    Article  CAS  Google Scholar 

  25. Hart, R.R., Robin, M.B., Kuebler, N.A.: 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J. Chem. Phys. 42(10), 3631–3638 (1965). https://doi.org/10.1063/1.1695771

    Article  CAS  Google Scholar 

  26. Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016). https://doi.org/10.1038/natrevmats.2016.61

    Article  CAS  Google Scholar 

  27. Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014). https://doi.org/10.1088/2053-1583/1/2/025001

    Article  Google Scholar 

  28. Appalakondaiah, S., Vaitheeswaran, G., Lebègue, S., Christensen, N.E., Svane, A.: Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86(3), 035105 (2012). https://doi.org/10.1103/PhysRevB.86.035105

    Article  CAS  Google Scholar 

  29. Lam, K., Dong, Z., Guo, J.: Performance limits projection of black phosphorous field-effect transistors. IEEE Electron Dev. Lett. 35(9), 963–965 (2014). https://doi.org/10.1109/led.2014.2333368

    Article  CAS  Google Scholar 

  30. Hu, Z.-X., Kong, X., Qiao, J., Normand, B., Ji, W.: Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 8(5), 2740–2750 (2016). https://doi.org/10.1039/c5nr06293d

    Article  CAS  Google Scholar 

  31. Lui, C.H., Ye, Z., Keiser, C., Xiao, X., He, R.: Temperature-activated layer-breathing vibrations in few-layer graphene. Nano Lett. 14(8), 4615–4621 (2014). https://doi.org/10.1021/nl501678j

    Article  CAS  Google Scholar 

  32. Low, T., Rodin, A.S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., Castro Neto, A.H.: Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90(7), 075434 (2014)

    Article  Google Scholar 

  33. Cartz, L., Srinivasa, S.R., Riedner, R.J., Jorgensen, J.D., Worlton, T.G.: Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71(4), 1718–1721 (1979). https://doi.org/10.1063/1.438523

    Article  CAS  Google Scholar 

  34. Jiang, J.-W., Park, H.S.: Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014). https://doi.org/10.1038/ncomms5727

    Article  CAS  Google Scholar 

  35. Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zamora, F., Zhu, Z., Zeng, H.: Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47(3), 982–1021 (2018). https://doi.org/10.1039/c7cs00125h

    Article  CAS  Google Scholar 

  36. Jain, A., McGaughey, A.J.H.: Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015). https://doi.org/10.1038/srep08501

    Article  CAS  Google Scholar 

  37. Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112(17), 176802 (2014). https://doi.org/10.1103/PhysRevLett.112.176802

    Article  CAS  Google Scholar 

  38. Guan, J., Zhu, Z., Tománek, D.: Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113(4), 046804 (2014). https://doi.org/10.1103/PhysRevLett.113.046804

    Article  CAS  Google Scholar 

  39. Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289–1293 (2014). https://doi.org/10.1021/jz500409m

    Article  CAS  Google Scholar 

  40. Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 93, 1–6 (2017). https://doi.org/10.1016/j.trac.2017.05.002

    Article  CAS  Google Scholar 

  41. Du, Y., Ouyang, C., Shi, S., Lei, M.: Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107(9), 093718 (2010). https://doi.org/10.1063/1.3386509

    Article  CAS  Google Scholar 

  42. Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319

    Article  CAS  Google Scholar 

  43. Karuzawa, M., Ishizuka, M., Endo, S.: The pressure effect on the superconducting transition temperature of black phosphorus. J. Phys.: Condens. Matter 14(44), 10759–10762 (2002). https://doi.org/10.1088/0953-8984/14/44/372

    Article  CAS  Google Scholar 

  44. Wang, L., Sofer, Z., Pumera, M.: Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2(3), 324–327 (2015). https://doi.org/10.1002/celc.201402363

    Article  CAS  Google Scholar 

  45. Chan, K.T., Malone, B.D., Cohen, M.L.: Pressure dependence of superconductivity in simple cubic phosphorus. Phys. Rev. B 88(6), 064517 (2013). https://doi.org/10.1103/PhysRevB.88.064517

    Article  CAS  Google Scholar 

  46. Kawamura, H., Shirotani, I., Tachikawa, K.: Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun. 49(9), 879–881 (1984). https://doi.org/10.1016/0038-1098(84)90444-7

    Article  CAS  Google Scholar 

  47. Shao, D.F., Lu, W.J., Lv, H.Y., Sun, Y.P.: Electron-doped phosphorene: a potential monolayer superconductor. EPL (Europhys. Lett.) 108(6), 67004 (2014). https://doi.org/10.1209/0295-5075/108/67004

    Article  CAS  Google Scholar 

  48. Huang, G.Q., Xing, Z.W., Xing, D.Y.: Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106(11), 113107 (2015). https://doi.org/10.1063/1.4916100

    Article  CAS  Google Scholar 

  49. Yuan, H., Liu, X., Afshinmanesh, F., Li, W., Xu, G., Sun, J., Lian, B., Curto, A.G., Ye, G., Hikita, Y., Shen, Z., Zhang, S.-C., Chen, X., Brongersma, M., Hwang, H.Y., Cui, Y.: Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707 (2015). https://doi.org/10.1038/nnano.2015.112

    Article  CAS  Google Scholar 

  50. Low, T., Engel, M., Steiner, M., Avouris, P.: Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90(8), 081408 (2014). https://doi.org/10.1103/PhysRevB.90.081408

    Article  CAS  Google Scholar 

  51. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497 (2013). https://doi.org/10.1038/nnano.2013.100

    Article  CAS  Google Scholar 

  52. Deng, Y., Luo, Z., Conrad, N.J., Liu, H., Gong, Y., Najmaei, S., Ajayan, P.M., Lou, J., Xu, X., Ye, P.D.: Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8(8), 8292–8299 (2014). https://doi.org/10.1021/nn5027388

    Article  CAS  Google Scholar 

  53. Wang, X., Jones, A.M., Seyler, K.L., Tran, V., Jia, Y., Zhao, H., Wang, H., Yang, L., Xu, X., Xia, F.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015). https://doi.org/10.1038/nnano.2015.71

    Article  CAS  Google Scholar 

  54. Zhang, S., Yang, J., Xu, R., Wang, F., Li, W., Ghufran, M., Zhang, Y.-W., Yu, Z., Zhang, G., Qin, Q., Lu, Y.: Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene. ACS Nano 8(9), 9590–9596 (2014). https://doi.org/10.1021/nn503893j

    Article  CAS  Google Scholar 

  55. Yang, J., Xu, R., Pei, J., Myint, Y.W., Wang, F., Wang, Z., Zhang, S., Yu, Z., Lu, Y.: Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Sci. Appl. 4, e312 (2015). https://doi.org/10.1038/lsa.2015.85

    Article  CAS  Google Scholar 

  56. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475

    Article  CAS  Google Scholar 

  57. Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R.K., Ning Lau, C.: Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2(1):011001 (2014). https://doi.org/10.1088/2053-1583/2/1/011001

    Article  Google Scholar 

  58. Srivastava, P., Hembram, K.P.S.S., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S.: Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms. J. Phys. Chem. C 119(12), 6530–6538 (2015). https://doi.org/10.1021/jp5110938

    Article  CAS  Google Scholar 

  59. Ren, J., Zhang, C., Li, J., Guo, Z., Xiao, H., Zhong, J.: Strain engineering of magnetic state in vacancy-doped phosphorene. Phys. Lett. A 380(40), 3270–3277 (2016). https://doi.org/10.1016/j.physleta.2016.07.055

    Article  CAS  Google Scholar 

  60. Ostahie, B., Aldea, A.: Phosphorene confined systems in magnetic field, quantum transport, and superradiance in the quasiflat band. Phys. Rev. B 93(7), 075408 (2016). https://doi.org/10.1103/PhysRevB.93.075408

    Article  CAS  Google Scholar 

  61. Jang, H., Wood, J.D., Ryder, C.R., Hersam, M.C., Cahill, D.G.: Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27(48), 8017–8022 (2015). https://doi.org/10.1002/adma.201503466

    Article  Google Scholar 

  62. Cai, Y., Ke, Q., Zhang, G., Feng, Y.P., Shenoy, V.B., Zhang, Y.-W.: Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Adv. Func. Mater. 25(15), 2230–2236 (2015). https://doi.org/10.1002/adfm.201404294

    Article  CAS  Google Scholar 

  63. Ribeiro-Soares, J., Almeida, R.M., Cançado, L.G., Dresselhaus, M.S., Jorio, A.: Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91(20), 205421 (2015). https://doi.org/10.1103/PhysRevB.91.205421

    Article  CAS  Google Scholar 

  64. Fei, R., Yang, L.: Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 105(8), 083120 (2014). https://doi.org/10.1063/1.4894273

    Article  CAS  Google Scholar 

  65. Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014). https://doi.org/10.1021/nl500935z

    Article  CAS  Google Scholar 

  66. Flores, E., Ares, J.R., Castellanos-Gomez, A., Barawi, M., Ferrer, I.J., Sánchez, C.: Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 106(2), 022102 (2015). https://doi.org/10.1063/1.4905636

    Article  CAS  Google Scholar 

  67. Fei, R., Faghaninia, A., Soklaski, R., Yan, J.-A., Lo, C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14(11), 6393–6399 (2014). https://doi.org/10.1021/nl502865s

    Article  CAS  Google Scholar 

  68. Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R.P., Lundstrom, M.S., Ye, P.D., Xu, X.: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572

    Article  CAS  Google Scholar 

  69. Wu, H.J., Zhao, L.D., Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., He, J.Q.: Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014). https://doi.org/10.1038/ncomms5515

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Azizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghashghaee, M., Ghambarian, M., Azizi, Z. (2020). Chemistry of Black Phosphorus. In: Inamuddin, Boddula, R., Asiri, A. (eds) Black Phosphorus. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29555-4_3

Download citation

Publish with us

Policies and ethics