Skip to main content

Infinets: The Parallel Syntax for Non-wellfounded Proof-Theory

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11714))

Abstract

Logics based on the \(\mu \)-calculus are used to model inductive and coinductive reasoning and to verify reactive systems. A well-structured proof-theory is needed in order to apply such logics to the study of programming languages with (co)inductive data types and automated (co)inductive theorem proving. The traditional proof system suffers some defects, non-wellfounded (or infinitary) and circular proofs have been recognized as a valuable alternative, and significant progress have been made in this direction in recent years. Such proofs are non-wellfounded sequent derivations together with a global validity condition expressed in terms of progressing threads.

The present paper investigates a discrepancy found in such proof systems, between the sequential nature of sequent proofs and the parallel structure of threads: various proof attempts may have the exact threading structure while differing in the order of inference rules applications. The paper introduces infinets, that are proof-nets for non-wellfounded proofs in the setting of multiplicative linear logic with least and greatest fixed-points (\(\mu \mathsf {MLL}^{\infty }\)) and study their correctness and sequentialization.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362. Partially funded by ANR Project RAPIDO, ANR-14-CE25-0007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baelde, D.: On the proof theory of regular fixed points. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 93–107. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_8

    Chapter  Google Scholar 

  2. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Computat. Logic (TOCL) 13(1), 2 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Baelde, D., Doumane, A., Kuperberg, D., Saurin, A.: Bouncing threads for infinitary and circular proofs. Manuscript, June 2019

    Google Scholar 

  4. Baelde, D., Doumane, A., Saurin, A.: Infinitary proof theory: the multiplicative additive case. In: 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, Marseille, France, 29 August–1 September 2016. LIPIcs, vol. 62, pp. 42:1–42:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  5. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75560-9_9

    Chapter  MATH  Google Scholar 

  6. Bagnol, M., Doumane, A., Saurin, A.: On the dependencies of logical rules. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 436–450. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0_28

    Chapter  MATH  Google Scholar 

  7. Blute, R.F., Cockett, J.R.B., Seely, R.A.G., Trimble, T.H.: Natural deduction and coherence for weakly distributive categories. J. Pure Appl. Algebr. 113(3), 229–296 (1996)

    Article  MathSciNet  Google Scholar 

  8. Brotherston, J.: Sequent calculus proof systems for inductive definitions. Ph.D. thesis, University of Edinburgh, November 2006

    Google Scholar 

  9. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite descent. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), Wroclaw, Poland, 10–12 July 2007, pp. 51–62. IEEE Computer Society (2007)

    Google Scholar 

  10. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J. Log. Comput. 21(6), 1177–1216 (2011)

    Article  MathSciNet  Google Scholar 

  11. Clairambault, P.: Least and greatest fixpoints in game semantics. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 16–31. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1_3

    Chapter  MATH  Google Scholar 

  12. Curien, P.-L.: Introduction to linear logic and ludics, Part II (2006)

    Google Scholar 

  13. Danos, V.: Une application de la logique linéaire á l’étude des processus de normalisation (principalement du \(\lambda \)-calcul). Thèse de doctorat, Université Denis Diderot, Paris 7 (1990)

    Google Scholar 

  14. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. Math. Log. 28, 181–203 (1989)

    Article  MathSciNet  Google Scholar 

  15. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time \(\mu \)-calculus. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_26

    Chapter  Google Scholar 

  16. De, A., Saurin, A.: Infinets: the parallel syntax for non-wellfounded proof-theory. Long version, June 2019

    Google Scholar 

  17. Doumane, A.: On the infinitary proof theory of logics with fixed points. (Théorie de la démonstration infinitaire pour les logiques à points fixes). Ph.D. thesis, Paris Diderot University, France (2017)

    Google Scholar 

  18. Doumane, A., Baelde, D., Hirschi, L., Saurin, A.: Towards completeness via proof search in the linear time \(\mu \)-calculus, January 2016. Accepted for publication at LICS

    Google Scholar 

  19. Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-elimination. In: Della Rocca, S.R., (ed.) Computer Science Logic 2013 (CSL 2013), CSL, Torino, Italy, 2–5 September 2013. LIPIcs, vol. 23, pp. 248–262. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  20. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)

    Article  MathSciNet  Google Scholar 

  21. Girard, J.-Y.: Proof-nets: the parallel syntax for proof theory (1996)

    Google Scholar 

  22. Guerrini, S.: A linear algorithm for mll proof net correctness and sequentialization. Theor. Comput. Sci. 412(20), 1958–1978 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kaivola, R.: A simple decision method for the linear time mu-calculus. In: Desel, J. (ed.) Structures in Concurrency Theory. Workshops in Computing, pp. 190–204. Springer, London (1995). https://doi.org/10.1007/978-1-4471-3078-9_13

    Chapter  Google Scholar 

  24. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354 (1983)

    Article  Google Scholar 

  25. Melliès, P.-A.: Higher-order parity automata. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer Society (2017)

    Google Scholar 

  26. Montelatici, R.: Polarized proof nets with cycles and fixpoints semantics. In: Hofmann, M. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 256–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44904-3_18

    Chapter  MATH  Google Scholar 

  27. Park, D.: Fixpoint induction and proofs of program properties. Mach. Intell. 5, 59–78 (1969)

    MATH  Google Scholar 

  28. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In: Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 357–371. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6_25

    Chapter  MATH  Google Scholar 

  29. Walukiewicz, I.: On completeness of the mu-calculus. In: Proceedings of the Eighth Annual Symposium on Logic in Computer Science (LICS 1993), Montreal, Canada, 19–23 June 1993, pp. 136–146. IEEE Computer Society (1993)

    Google Scholar 

  30. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional mu-calculus. In: Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science, San Diego, California, USA, 26–29 June 1995, pp. 14–24. IEEE Computer Society (1995)

    Google Scholar 

Download references

Acknowledgement

We are indebted to anonymous reviewers for providing insightful comments which has immensely enhanced the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Saurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De, A., Saurin, A. (2019). Infinets: The Parallel Syntax for Non-wellfounded Proof-Theory. In: Cerrito, S., Popescu, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2019. Lecture Notes in Computer Science(), vol 11714. Springer, Cham. https://doi.org/10.1007/978-3-030-29026-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29026-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29025-2

  • Online ISBN: 978-3-030-29026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics