Skip to main content

Didactical Issues at the Interface of Mathematics and Computer Science

  • Chapter
  • First Online:
Proof Technology in Mathematics Research and Teaching

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 14))

Abstract

This contribution takes place in the context of a research project on the epistemological and didactical issues of interactions between mathematics and computer science. We make the hypothesis that, with the introduction of digital tools and computer science content in most curricula, significantly taking into account the epistemology of mathematics, computer science and their interactions is essential in order to tackle the challenges of mathematics and computer science education in the digital era. In view of this, addressing the question of proof in mathematics and computer science is a central didactical issue, which we examine in this contribution. We will elaborate on the links between the concepts of algorithm, proof, and program, and will argue for their significance in a general reflection on didactical issues in mathematics and computer science, in their teaching at high school and undergraduate levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Commission de Réflexion sur l’Enseignement des Mathématiques, National Commission for Reflection on the Teaching of Mathematics.

  2. 2.

    This was presented in an unpublished regular lecture given at ICME 11 (http://www.icme11.org/).

  3. 3.

    The term habitat was coined by Artaud (1998) in the context of the so-called ecological approach to didactics.

References

  • Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques. Addison Wesley.

    Google Scholar 

  • Arora, S., & Barak, B. (2009). Computational complexity: A modern approach. Cambridge University Press.

    Google Scholar 

  • Artaud, M. (1998). Introduction à l’approche écologique du didactique - L’écologie des organisations mathématiques et didactiques. Actes de la IXème école d’été de didactique des mathématiques (pp. 101–139). Caen: ARDM & IUFM.

    Google Scholar 

  • Arzarello, F., Bussi, M. G. B., Leung, A. Y. L., Mariotti, M. A., & Stevenson, I. (2012). Experimental approaches to theoretical thinking: Artefacts and proofs. In Proof and proving in mathematics education (pp. 97–143). Springer.

    Google Scholar 

  • Balacheff, N. (2013). , a model to reason on learners’ conceptions. In PME-NA 2013-psychology of mathematics education (pp. 2–15). North American Chapter.

    Google Scholar 

  • Baron, G. L., & Bruillard, É. (2011). L’informatique et son enseignement dans l’enseignement scolaire général français: enjeux de pouvoir et de savoirs. In: Recherches et expertises pour l’enseignement scientifique (Vol. 1, pp. 79–90). De Boeck Supérieur.

    Google Scholar 

  • Basu, S., Pollack, R., & Roy, M. F. (2006). Algorithms in real algebraic geometry (2nd ed.). In Algorithms and computation in mathematics (Vol. 10 ). Berlin, New York: Springer.

    Google Scholar 

  • Bérard, B. (2001). Systems and software verification: Model checking techniques and tools. Springer.

    Google Scholar 

  • Borwein, J. M. (2012). Exploratory experimentation: Digitally-assisted discovery and proof. In Proof and proving in mathematics education (pp. 69–96). Springer.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer Academic Publishers.

    Google Scholar 

  • Chabert, J. L. (1999). A history of algorithms from the pebble to the microchip. Springer.

    Google Scholar 

  • Colton, S. (2007). Computational discovery in pure mathematics. In Computational discovery of scientific knowledge (pp. 175–201). Springer.

    Google Scholar 

  • Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd ed.). The MIT Press.

    Google Scholar 

  • Da Costa, N. C. A. (1997). Logiques classiques et non classiques: essai sur les fondements de la logique. Paris: Masson.

    Google Scholar 

  • Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches en didactique des mathématiques, 7(2), 5–31.

    Google Scholar 

  • Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM, 40(3), 373–384.

    Article  Google Scholar 

  • Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and didactic study of a specific calculus reasoning rule. Educational Studies in Mathematics, 60(2), 149–172.

    Article  Google Scholar 

  • Frege, G. (1882). Über die wissenschaftliche Berechtigung einer Begriffsschrift. Zeitschrift für Philosophie und philosophische Kritik, 81, 48–56. (English translation in Conceptual notation and related articles. Clarendon Press (1972)).

    Google Scholar 

  • Godot, K., & Grenier, D. (2004). Research situations for teaching: A modelization proposal and examples. In Proceedings of ICME 10, IMFUFA, Roskilde University.

    Google Scholar 

  • Gravier, S., Payan, C., & Colliard, M. N. (2008). Maths à modeler: Pavages par des dominos. Grand N, 82, 53–68.

    Google Scholar 

  • Grenier, D., & Payan, C. (1998). Spécificité de la preuve et de la modélisation en mathématiques discrètes. Recherches en didactique des mathématiques, 18(2), 59–100.

    Google Scholar 

  • Gribomont, P., Ribbens, D., & Wolper, P. (2000). Logique, automates, informatique. In F. Beets & E. Gillet (Eds.), Logique en perspective: Mélanges offerts à Paul Gochet, Ousia (pp. 545–577).

    Google Scholar 

  • Gueudet, G., Bueno-Ravel, L., Modeste, S., & Trouche, L. (2017). Curriculum in France. A national frame in transition. In International perspectives on mathematics curriculum, research issues in mathematics education series. IAP.

    Google Scholar 

  • Hart, E. W. (1998). Algorithmic problem solving in discrete mathematics. In L. J. Morrow & M. J. Kenney (Eds.), The teaching and learning of algorithm in school mathematics, 1998 NCTM Yearbook (pp. 251–267). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications of the ACM, 12(10), 576–580.

    Article  Google Scholar 

  • Hopcroft, J., Motwani, R., & Ullman, J. (2007). Introduction to automata theory, languages, and computation (3rd ed.). Addison-Wesley.

    Google Scholar 

  • Howson, A. G., & Kahane, J. P. (Eds.). (1986). The influence of computers and informatics on mathematics and its teaching, international commission on mathematical instruction edn. ICMI Study Series. Cambridge University Press.

    Google Scholar 

  • Kahane, J. P. (2002). Enseignement des sciences mathématiques : Commission de réflexion sur l’enseignement des mathématiques : Rapport au ministre de l’éducation nationale (cndp ed.). Paris: Odile Jacob.

    Google Scholar 

  • Lovász L (2007) Trends in mathematics: How they could change education? In Conférence européenne “The future of mathematics education in Europe”, Lisbonne.

    Google Scholar 

  • Meyer, A., & Modeste, S. (2018). Recherche binaire et méthode de dichotomie, comparaison et enjeux didactiques à l’interface mathématiques - informatique. In Proceedings of EMF, Paris, France (to appear).

    Google Scholar 

  • Modeste, S. (2012). Enseigner l’algorithme pour quoi ? Quelles nouvelles questions pour les mathématiques ? Quels apports pour l’apprentissage de la preuve ? Ph.D. thesis, Université de Grenoble.

    Google Scholar 

  • Modeste, S. (2013). Modelling algorithmic thinking: The fundamental notion of problem. In Proceedings of CERME 8, Antalya (Turkey).

    Google Scholar 

  • Modeste, S. (2016). Impact of informatics on mathematics and its teaching. In F. Gadducci & M. Tavosanis (Eds.), History and philosophy of computing (pp. 243–255). Cham: Springer International Publishing.

    Google Scholar 

  • Morris, C. W. (1938). Foundations of the theory of signs. In International encyclopedia of unified science (pp. 1–59), Chicago University Press.

    Google Scholar 

  • Ouvrier-Buffet, C. (2014). Discrete mathematics teaching and learning. In Encyclopedia of mathematics education (pp. 181–186).

    Google Scholar 

  • Perrin, D. (2007). L’expérimentation en mathématiques. Petit x, 73, 6–34.

    Google Scholar 

  • Quine, W. V. (1950). Methods of logic. Harvard University Press.

    Google Scholar 

  • Reynolds, J. C. (1998). Theories of programming languages. Cambridge University Press.

    Google Scholar 

  • Sedgewick, R., & Flajolet, P. (2013). An introduction to the analysis of algorithms. Pearson Education.

    Google Scholar 

  • Sinaceur, H. (1991a). Corps Et Modèles: Essai Sur l’Histoire de l’Algèbre Réelle. Vrin.

    Google Scholar 

  • Sinaceur, H. (1991b). Logique: mathématique ordinaire ou épistémologie effective? In: Hommage à Jean-Toussaint Desanti, Trans-Europ-Repress.

    Google Scholar 

  • Straubing, H., & Weil, P. (2012). An introduction to finite automata and their connection to logic. In P. S. Deepak D’Souza (Ed.), Modern applications of automata theory (pp. 3–43). IISc Research Monographs: World Scientific.

    Google Scholar 

  • Tarski, A. (1933). The concept of truth in the languages of the deductive sciences. Prace Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Matematyczno-Fizycznych 34(13), 172–198 (English translation in Tarski (1983)).

    Google Scholar 

  • Tarski, A. (1936). On the concept of logical consequence. Przegla̧d Filozoficzny, 39, 58–68 (English translation in Tarski (1983), pp. 409–420)

    Google Scholar 

  • Tarski, A. (1941). Introduction to logic and to the methodology of the deductive sciences. Oxford University Press (reedited in Tarski (1995))

    Google Scholar 

  • Tarski, A. (1943). The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research, 4(3), 341–376.

    Article  Google Scholar 

  • Tarski, A. (1954). Contributions to the theory of models, I–II. Indagationes Mathematicae, 16, 572–588.

    Article  Google Scholar 

  • Tarski, A. (1955). Contributions to the theory of models, III. Indagationes Mathematicae, 17, 56–64.

    Article  Google Scholar 

  • Tarski, A. (1983). Logic, semantics, metamathematics: Papers from 1923 to 1938. Hackett (J. H. Woodger, trans. Introduction: J. Corcoran).

    Google Scholar 

  • Tarski, A. (1995). Introduction to logic and to the methodology of deductive sciences. New York: Dover Publications, INC. (unabridged Dover republication of the edition published by Oxford University Press, New York, 1946)

    Google Scholar 

  • Thomas, W. (1997). Languages, automata, and logic. In Handbook of formal languages (pp. 389–455). Springer.

    Google Scholar 

  • Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52(2), 83–94.

    Article  Google Scholar 

  • Wittgenstein, L. (1921). Logisch-philosophische abhandlung. Annalen der Naturphilosophie, 14 (English translations in C. K. Ogden trans. Routledge & Kegan Paul (1922) and D. F. Pears and B. F. McGuinnes, trans. Routledge (1961)).

    Google Scholar 

Download references

Acknowledgements

Research funded by the french Agence Nationale pour la Recherche, project number <ANR-16-CE38-0006-01>.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Durand-Guerrier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durand-Guerrier, V., Meyer, A., Modeste, S. (2019). Didactical Issues at the Interface of Mathematics and Computer Science. In: Hanna, G., Reid, D., de Villiers, M. (eds) Proof Technology in Mathematics Research and Teaching . Mathematics Education in the Digital Era, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-28483-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28483-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28482-4

  • Online ISBN: 978-3-030-28483-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics