Skip to main content

Performance of Under-Resolved, Model-Free LBM Simulations in Turbulent Shear Flows

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling

Abstract

The paper outlines the predictive capabilities of lattice Boltzmann methods (LBM) in turbulent shear flows. Attention is devoted to a specific collision operator which relaxes the distribution functions in cumulant space. The study highlights the benefits of a carefully defined discrete collision operator by scrutinizing the numerical stability and the predictive accuracy for a wide scope of resolutions—ranging from DNS to RANS—when no ad hoc turbulence closure is employed. Examples included are concerned with two frequently computed fundamental flows, i.e. Taylor-Green vortex and channel flows. Results reveal a fair accuracy and a remarkably small resolution dependence for the investigated cumulant collision operator, which is quite the contrary for other collision models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shur, M., Spalart, P.R., Strelets, M., Travin, A.: Detached eddy simulation of an airfoil at high angle of attack. Eng. Turbul. Model. Exp. 4, 669–678 (1999)

    Article  Google Scholar 

  2. Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES, pp. 137–147 (1997)

    Google Scholar 

  3. Spalart, P.R., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comp. Fluid Dyn. 20, 181–195 (2006)

    Article  Google Scholar 

  4. Horeau, Y., Peng, S.H., Schwamborn, D., Revell, A.: Progress in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 137. Springer, Berlin (2018)

    Google Scholar 

  5. Grimaji, S., Haase, W., Peng, S.H., Schwamborn, D.: Progress in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 130. Springer, Berlin (2015)

    Google Scholar 

  6. Menter, F.: Stress-blended eddy simulation (SBES)—a new paradigm in hybrid RANS-LES modeling. In: Progress in Hybrid RANS-LES Modelling, pp. 27–37 (2018)

    Google Scholar 

  7. Shur, M., Spalart, P.R., Strelets, M., Travin, A.: A hybrid RANS-LES model with delayed DES and wall-modeled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  8. Fuchs, M., Mockett, C., Sesterhenn, J., Thiele, F.: Recent Results with Grey-Area Improved DDES for a Wide Range of Flows. In: Progress in Hybrid RANS-LES Modelling, pp. 195–205 (2018)

    Google Scholar 

  9. Germano, M.: Properties of the hybrid RANS/LES filter. Theor. Comput. Fluid Dyn. 17, 225–231 (2004)

    Article  Google Scholar 

  10. Menter, F., Kuntz, M.: Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, pp. 339–352 (2004)

    Google Scholar 

  11. Spalart, P.R.: A Young-Person’s Guide to Detached-Eddy Simulation Grids. NASA/CR-2001-211032 (2001)

    Google Scholar 

  12. Aidun, C.K., Clausen, J.R.: Lattice-Boltzmann method for complex flows. Ann. Rev. Fluid Mech. 42, 439–472 (2010)

    Article  MathSciNet  Google Scholar 

  13. Feichtinger, C., Habich, J., Köstlera, H., Hager, G., Rüde, U., Wellein, G.: A flexible patch-based lattice Boltzmann parallelization approach for heterogeneous GPU-CPU clusters. Parallel Comput. 37, 535–549 (2011)

    Article  MathSciNet  Google Scholar 

  14. Wang, X., Aoki, T.: High performance computation by multi-node GPU cluster- TSUBAME 2.0 on the air flow in an urban city using lattice Boltzmann method. Int. J. Aerosp. Light. Struct. 2, 77–86 (2012)

    Google Scholar 

  15. Janßen, C.F., Mierke, D., Überrück, M., Gralher, S., Rung, T.: Validation of the GPU-Accelerated CFD solver ELBE for free surface flow problems in civil and environmental engineering. Computation 3, 354–385 (2015)

    Article  Google Scholar 

  16. Schornbaum, F., Rüde, U.: Massively parallel algorithms for the Lattice Boltzmann method on nonuniform grids. SIAM J. Sci. Comput. 38, 96–126 (2016)

    Article  MathSciNet  Google Scholar 

  17. T. Sayadi, T., Hamman, C.W., Moin, P.: Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480–509 (2013)

    Google Scholar 

  18. Niedermeier, C.F., JanĂźen, C.F., Indinger, T.: Massively-parallel mulit-GPU simulations for fast and accurate automotive aerodynamics. In: Proccedings of 7th European Conference on Computational Fluid Dynamics (2018)

    Google Scholar 

  19. Krämer, A., Küllmer, K., Reith, D., Joppich, W., Foysi, H.: Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows. Phys. Rev. E 95, 023305 (2017)

    Google Scholar 

  20. Seeger, S., Hoffmann, K.H.: The cumulant method for computational kinetic theory. Continuum Mech. Thermodyn. 12, 403–421 (2000)

    Article  MathSciNet  Google Scholar 

  21. Geier, M., Schönherr, M., Pasquali, A., Krafczyk, M.: The cumulant lattice Boltzmann equation in three dimensions: theory and validation. Comput. Math. Appl. 70, 507–547 (2015)

    Article  MathSciNet  Google Scholar 

  22. Geier, M., Pasquali, A., Schönherr, M.: Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part I: derivation and validation. J. Comput. Phys. 348, 862–888 (2017)

    Article  MathSciNet  Google Scholar 

  23. Gehrke, M., Janßen, C.F., Rung, T.: Scrutinizing lattice Boltzmann methods for direct numerical simulations of turbulent channel flows. Comput. Fluids 156, 247–263 (2017)

    Article  MathSciNet  Google Scholar 

  24. Chen, H., Orzag, S.A., Staroselsky, I., Succi, S.: Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 519, 301–314 (2004)

    Article  MathSciNet  Google Scholar 

  25. Chen, H., Staroselsky, I., Yakhot, V.: On non-pertubative formulation of hydrodynamics using kinetic theory. Phys. Scr. (T155), 014040 (2013)

    Google Scholar 

  26. Weickert, F.M., Teike, G., Schmidt, O., Sommerfeld, M.: Investigation of the LES WALE turbulence model within the lattice Boltzmann framework. Comput. Math. Appl. 59, 2200–2214 (2010)

    Article  MathSciNet  Google Scholar 

  27. Sagaut, P.: Towards advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: theoretical formulations. Comput. Math. Appl. 59, 2194–2199 (2010)

    Article  MathSciNet  Google Scholar 

  28. Malaspinas, O., Sagaut, P.: Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model. Phys. Fluids 23, 105103 (2011)

    Google Scholar 

  29. Sajjadia, H., Salmanzadeha, M., Ahmadib, G., Jafaric, S.: Advanced large-eddy simulation for lattice Boltzmann methods: the approximate deconvolution model. Comput. Fluids 150, 66–73 (2015)

    Article  Google Scholar 

  30. Tan, S., Li, Q., Fu, S.: Gas-Kinetic Scheme for Multiscale Turbulence Simulation. In: Progress in Hybrid RANS-LES Modelling, pp. 135–142 (2018)

    Google Scholar 

  31. Girimaji, S.S.: boltzmann kinetic equation for filtered fluid turbulence. Phys. Rev. Lett. 034501 (2007)

    Google Scholar 

  32. Marié, S., Gloerfelt, X.: Adaptive filtering for the Lattice Boltzmann method. J. Comput. Phys. 333, 212–229 (2017)

    Article  MathSciNet  Google Scholar 

  33. Nathen, P., Gaudlitz, D., Krause, M.J., Adams, N.A.: On the stability and accuracy of the BGK, MRT and RLB Boltzmann schemes for the simulation of turbulent flows. Commun. Comput. Phys. 23(3), 846–876 (2018)

    Article  MathSciNet  Google Scholar 

  34. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method—Principles and Practice. Springer, Berlin (2017)

    Google Scholar 

  35. Silva, G., Semioa, V.: Truncation errors and the rotational invariance of three-dimensional lattice models in the lattice Boltzmann method. J. Comput. Phys. 269, 259–279 (2014)

    Article  MathSciNet  Google Scholar 

  36. Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Google Scholar 

  37. Dellar, P.: Lattice Boltzmann algorithms without cubic defects in Galilean invariance on standard lattices. J. Comput. Phys. 259, 270–283 (2014)

    Article  MathSciNet  Google Scholar 

  38. Fauconnier, D., Bogey, C., Dick, E.: On the performance of relaxation filtering for large-eddy simulation. J. Turbul. 14, 22–49 (2013)

    Article  MathSciNet  Google Scholar 

  39. Aubard, G., Stefanin Volpiani, P., Gloerfelt, X., Robinet, J.C.: Comparison of subgrid-scale viscosity models and selective filtering strategy for large-eddy simulations. Flow Turbul. Combust 91, 497–518 (2013)

    Article  Google Scholar 

  40. Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B., Morf, R.H., Frisch, U.: Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130, 411–452 (1983)

    Article  Google Scholar 

  41. Kim, J., Moin, P., Moser, R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  Google Scholar 

  42. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re\(_\tau \) =590. Phys. Fluids 11, 943–945 (1999)

    Google Scholar 

  43. Tölke, J., Freudiger, S., Krafczyk, M.: An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations. Comput. Fluids 35(8), 820–830 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gehrke, M., Banari, A., Rung, T. (2020). Performance of Under-Resolved, Model-Free LBM Simulations in Turbulent Shear Flows. In: Hoarau, Y., Peng, SH., Schwamborn, D., Revell, A., Mockett, C. (eds) Progress in Hybrid RANS-LES Modelling . Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-27607-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27607-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27606-5

  • Online ISBN: 978-3-030-27607-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics