Skip to main content

Access Interval Prediction for Tightly Coupled Memory Systems

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11733))

Included in the following conference series:

Abstract

Today, processing elements of embedded systems usually share some amount of the available on-chip memory in order to maximize the area utilization. However, sharing memory incurs runtime conflicts, which entail performance penalties. To ease this restriction, we introduce a method for memory Access Interval Prediction. It minimizes conflicts by predicting the interval between two consecutive memory accesses. In contrast to contemporary work, we do not rely on compile time information or other a priori knowledge. Standard benchmarks show that we can predict over 80% of all memory access intervals correctly, thereby significantly reducing the number of access conflicts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Compiler issues prevented the use of the most recent SPECCPU 2017 version.

References

  1. Ax, J., et al.: CoreVA-MPSoC: a many-core architecture with tightly coupled shared and local data memories. IEEE Trans. Parallel Distrib. Syst. 29(5), 1030–1043 (2018). https://doi.org/10.1109/TPDS.2017.2785799

    Article  Google Scholar 

  2. Bates, D., Bradbury, A., Koltes, A., Mullins, R.: Exploiting tightly-coupled cores. In: SAMOS. IEEE (2013). https://doi.org/10.1109/SAMOS.2013.6621138

  3. Gautschi, M., Rossi, D., Benini, L.: Customizing an open source processor to fit in an ultra-low power cluster with a shared L1 memory. In: GLSVLSI. ACM Press, New York (2014). https://doi.org/10.1145/2591513.2591569

  4. Gelado, I., Cabezas, J., Navarro, N., Stone, J.E., Patel, S., Hwu, W.M.W.: An asymmetric distributed shared memory model for heterogeneous parallel systems. In: ASPLOS. ACM Press, New York (2010). https://doi.org/10.1145/1736020.1736059

  5. Haas, S., et al.: A Heterogeneous SDR MPSoC in 28 nm CMOS for low-latency wireless applications. In: DAC. ACM Press, New York (2017). https://doi.org/10.1145/3061639.3062188

  6. Paolieri, M., Quiñones, E., Cazorla, F.J., Bernat, G., Valero, M.: Hardware support for WCET analysis of hard real-time multicore systems. In: ISCA. ACM Press, New York (2009). https://doi.org/10.1145/1555754.1555764

  7. Rahimi, A., Loi, I., Kakoee, M.R., Benini, L.: A fully-synthesizable single-cycle interconnection network for Shared-L1 processor clusters. In: DATE. IEEE (2011). https://doi.org/10.1109/DATE.2011.5763085

  8. Reineke, J., Liu, I., Patel, H.D., Kim, S., Lee, E.A.: PRET DRAM controller: bank privatization for predictability and temporal isolation. In: CODES+ISSS. ACM Press, New York (2011). https://doi.org/10.1145/2039370.2039388

  9. Schoeberl, M., et al.: T-CREST: time-predictable multi-core architecture for embedded systems. J. Syst. Architect. 61(9), 449–471 (2015). https://doi.org/10.1016/j.sysarc.2015.04.002

    Article  Google Scholar 

  10. SPEC: SPECCPU 2006 (2006). https://www.spec.org/cpu2006/

  11. Tretter, A., Giannopoulou, G., Baer, M., Thiele, L.: Minimising access conflicts on shared multi-bank memory. ACM Trans. Embed. Comput. Syst. 16(5s), 1–20 (2017). https://doi.org/10.1145/3126535

    Article  Google Scholar 

  12. Venkatesh, G., et al.: Conservation cores. In: ASPLOS. ACM Press, New York (2010). https://doi.org/10.1145/1736020.1736044

  13. Wittig, R., Hasler, M., Matus, E., Fettweis, G.: Queue based memory management unit for heterogeneous MPSoCs. In: DATE. IEEE, March 2019. https://doi.org/10.23919/DATE.2019.8715129

  14. Wittig, R., Hasler, M., Matus, E., Fettweis, G.: Statistical access interval prediction for tightly coupled memory systems. In: Cool Chips 22. IEEE (2019)

    Google Scholar 

  15. Yun, H., Mancuso, R., Wu, Z.P., Pellizzoni, R.: PALLOC: DRAM bank-aware memory allocator for performance isolation on multicore platforms. In: RTAS. IEEE (2014). https://doi.org/10.1109/RTAS.2014.6925999

Download references

Acknowledgment

This publication contains results of the fast semantics project, which is a member of the fast2020 research cluster. It is being financed by the ‘Zwanzig20 – Partnerschaft für Innovation’ initiative of the Federal Ministry for Education and Research of Germany under the grant number FKZ03ZZ0521D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Wittig , Friedrich Pauls , Emil Matus or Gerhard Fettweis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wittig, R., Pauls, F., Matus, E., Fettweis, G. (2019). Access Interval Prediction for Tightly Coupled Memory Systems. In: Pnevmatikatos, D., Pelcat, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2019. Lecture Notes in Computer Science(), vol 11733. Springer, Cham. https://doi.org/10.1007/978-3-030-27562-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27562-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27561-7

  • Online ISBN: 978-3-030-27562-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics