Skip to main content

Prominin-1 and Photoreceptor Cadherin Localization in Xenopus laevis: Protein-Protein Relationships and Function

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

Retinal degenerative diseases are genetically diverse and rare inherited disorders that cause the death of rod and cone photoreceptors, resulting in progressive vision loss and blindness. This review will focus on two retinal degeneration-causing genes: prominin-1 (prom1) and photoreceptor cadherin (prCAD). We will discuss protein localization, potential roles in photoreceptor outer segment disc morphogenesis, and areas for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COS:

Cone outer segment

IS:

Inner segment

ONL:

Outer nuclear layer

OS:

Outer segment

prCAD:

Photoreceptor cadherin

prom1:

Prominin-1

ROS:

Rod outer segment

RPE:

Retinal pigment epithelium

STZ:

Streptozotocin

References

  • Abd El-Aziz MM, Barragan I, O'Driscoll CA et al (2008) EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet 40:1285–1287

    Article  CAS  Google Scholar 

  • Almasry SM, Habib EK, Elmansy RA et al (2018) Hyperglycemia alters the protein levels of prominin-1 and VEGFA in the retina of albino rats. J Histochem Cytochem 66:33–45

    Article  CAS  Google Scholar 

  • Bachor TP, Karbanová J, Büttner E et al (2017) Early ciliary and prominin-1 dysfunctions precede neurogenesis impairment in a mouse model of type 2 diabetes. Neurobiol Dis 108:13–28

    Article  CAS  Google Scholar 

  • Bhattacharya S, Yin J, Winborn CS et al (2017) Prominin-1 is a novel regulator of autophagy in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 58:2366–2387

    Article  CAS  Google Scholar 

  • Burgoyne T, Meschede IP, Burden JJ et al (2015) Rod disc renewal occurs by evagination of the ciliary plasma membrane that makes cadherin-based contacts with the inner segment. Proc Natl Acad Sci U S A 112:15922–15927

    Article  CAS  Google Scholar 

  • Collin RW, Littink KW, Klevering BJ et al (2008) Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am J Hum Genet 83:594–603

    Article  CAS  Google Scholar 

  • Corbeil D, Marzesco AM, Wilsch-Brauninger M et al (2010) The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett 584:1659–1664

    Article  CAS  Google Scholar 

  • Corbeil D, Karbanova J, Fargeas CA et al (2013) Prominin-1 (CD133): molecular and cellular features across species. Adv Exp Med Biol 777:3–24

    Article  Google Scholar 

  • Dellett M, Sasai N, Nishide K et al (2014) Genetic background and light-dependent progression of photoreceptor cell degeneration in Prominin-1 knockout mice. Invest Ophthalmol Vis Sci 56:164–176

    Article  Google Scholar 

  • Ding JD, Salinas RY, Arshavsky VY (2015) Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J Cell Biol 211:495–502

    Article  Google Scholar 

  • Eidinger O, Leibu R, Newman H et al (2015) An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy. Mol Vis 21:1295–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AF, Moritz OL, Williams DS (2016) Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res 55:52–81

    Article  CAS  Google Scholar 

  • Gurudev N, Yuan M, Knust E (2014) chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biol Open 3:332–341

    Article  CAS  Google Scholar 

  • Han Z, Papermaster DS (2011) Identification of three prominin homologs and characterization of their messenger RNA expression in Xenopus laevis tissues. Mol Vis 17:1381–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Z, Anderson DW, Papermaster DS (2012) Prominin-1 localizes to the open rims of outer segment lamellae in Xenopus laevis rod and cone photoreceptors. Invest Ophthalmol Vis Sci 53:361–373

    Article  CAS  Google Scholar 

  • Henderson RH, Li Z, Abd El Aziz MM et al (2010) Biallelic mutation of protocadherin-21 (PCDH21) causes retinal degeneration in humans. Mol Vis 16:46–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaszai J, Fargeas CA, Graupner S et al (2011) Distinct and conserved prominin-1/CD133-positive retinal cell populations identified across species. PLoS One 6:e17590

    Article  CAS  Google Scholar 

  • Marzesco AM, Janich P, Wilsch-Bräuninger M et al (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  CAS  Google Scholar 

  • Maw MA, Corbeil D, Koch J et al (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34

    Article  CAS  Google Scholar 

  • Michaelides M, Gaillard MC, Escher P et al (2010) The PROM1 mutation p.R373C causes an autosomal dominant bull's eye maculopathy associated with rod, rod-cone, and macular dystrophy. Invest Ophthalmol Vis Sci 51:4771–4780

    Article  Google Scholar 

  • Nie J, Mahato S, Mustill W et al (2012) Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev Biol 371:312–320

    Article  CAS  Google Scholar 

  • Ostergaard E, Batbayli M, Duno M et al (2010) Mutations in PCDH21 cause autosomal recessive cone-rod dystrophy. J Med Genet 47:665–669

    Article  CAS  Google Scholar 

  • Permanyer J, Navarro R, Friedman J et al (2010) Autosomal recessive retinitis pigmentosa with early macular affectation caused by premature truncation in PROM1. Invest Ophthalmol Vis Sci 51:2656–2663

    Article  Google Scholar 

  • Pras E, Abu A, Rotenstreich Y et al (2009) Cone-rod dystrophy and a frameshift mutation in the PROM1 gene. Mol Vis 15:1709–1716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rattner A, Chen J, Nathans J (2004) Proteolytic shedding of the extracellular domain of photoreceptor cadherin. Implications for outer segment assembly. J Biol Chem 279:42202–42210

    Article  CAS  Google Scholar 

  • Rattner A, Smallwood PM, Williams J et al (2001) A photoreceptor-specific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival. Neuron 32:775–786

    Article  CAS  Google Scholar 

  • Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190:501–508

    Article  CAS  Google Scholar 

  • Volland S, Hughes LC, Kong C et al (2015) Three-dimensional organization of nascent rod outer segment disk membranes. Proc Natl Acad Sci U S A 112:14870–14875

    Article  CAS  Google Scholar 

  • Williams DS, Linberg KA, Vaughan DK et al (1988) Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors. J Comp Neurol 272:161–176

    Article  CAS  Google Scholar 

  • Yang LL. Characterization of protocadherin-21 in photoreceptor disk synthesis. MSc Thesis; Cell and Developmental Biology; 2012.

    Google Scholar 

  • Yang Z, Chen Y, Lillo C et al (2008) Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118:2908–2916

    Article  CAS  Google Scholar 

  • Zacchigna S, Oh H, Wilsch-Brauninger M et al (2009) Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci 29:2297–2308

    Article  CAS  Google Scholar 

  • Zhang Q, Zulfiqar F, Xiao X et al (2007) Severe retinitis pigmentosa mapped to 4p15 and associated with a novel mutation in the PROM1 gene. Hum Genet 122:293–299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research funded by Paul and Edwina Memorial Fund, CIHR (PJT-155937), NSERC (RGPIN-2015-04326), and Foundation Fighting Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany J. Carr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carr, B.J., Yang, L.L., Moritz, O.L. (2019). Prominin-1 and Photoreceptor Cadherin Localization in Xenopus laevis: Protein-Protein Relationships and Function. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_79

Download citation

Publish with us

Policies and ethics