Skip to main content

cAMP and Photoreceptor Cell Death in Retinal Degeneration

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

Inherited retinal degenerations (IRDs) are a genetically heterogeneous group of disorders characterized by the progressive loss of photoreceptor cells. Despite this heterogeneity in the disease-causing mutation, common underlying mechanisms promoting photoreceptor cell death may be present. Dysregulation of photoreceptor cyclic nucleotide signaling may be one such common feature differentiating healthy from diseased photoreceptors. Here we review evidence that elevated retinal cAMP levels promote photoreceptor death and are a common feature of numerous animal models of IRDs. Improving our understanding of how cAMP levels become elevated and identifying downstream effectors may prove important for the development of therapeutics that will be applicable to multiple forms of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfinito PD, Townes-Anderson E (2002) Activation of mislocalized opsin kills rod cells: a novel mechanism for rod cell death in retinal disease. Proc Natl Acad Sci U S A 99(8):5655–5660

    Article  CAS  Google Scholar 

  • Astakhova LA, Samoiliuk EV, Govardovskii VI, Firsov ML (2012) cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade. J Gen Physiol 140(4):421–433

    Article  CAS  Google Scholar 

  • Barabas P, Cutler Peck C, Krizaj D (2010) Do calcium channel blockers rescue dying photoreceptors in the Pde6b (rd1) mouse? Adv Exp Med Biol 664:491–499

    Article  CAS  Google Scholar 

  • Berson EL (1993) Retinitis pigmentosa. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 34(5):1659–1676

    CAS  PubMed  Google Scholar 

  • Bo Q, Ma S, Han Q, Wang FE, Li X, Zhang Y (2015) Role of autophagy in photoreceptor cell survival and death. Crit Rev Eukaryot Gene Expr 25(1):23–32

    Article  Google Scholar 

  • Bush RA, Sugawara T, Iuvone PM, Sieving PA (1999) Melatonin receptor blockers enhance photoreceptor survival and function in light damaged rat retina. Retinal degenerative diseases and experimental therapy. Springer, Boston, MA

    Google Scholar 

  • Chang GQ, Hao Y, Wong F (1993) Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11(4):595–605

    Article  CAS  Google Scholar 

  • Chen Y, Palczewska G, Mustafi D, Golczak M, Dong Z, Sawada O, Maeda T, Maeda A, Palczewski K (2013) Systems pharmacology identifies drug targets for Stargardt disease-associated retinal degeneration. J Clin Invest 123(12):5119–5134

    Article  CAS  Google Scholar 

  • Cohen AI, Blazynski C (1990) Dopamine and its agonists reduce a light-sensitive pool of cyclic AMP in mouse photoreceptors. Vis Neurosci 4(1):43–52

    Article  CAS  Google Scholar 

  • Cohen AI, Todd RD, Harmon S, O’Malley KL (1992) Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci U S A 89(24):12093–12097

    Article  CAS  Google Scholar 

  • Cooper DM, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signaling. Nature 374(6521):421–424

    Article  CAS  Google Scholar 

  • Cottet S, Schorderet DF (2009) Mechanisms of apoptosis in retinitis pigmentosa. Curr Mol Med 9(3):375–383

    Article  CAS  Google Scholar 

  • Farber DB, Lolley RN (1974) Cyclic guanosine monophosphate: elevation in degenerating photoreceptor cells of the C3H mouse retina. Science 186(4162):449–451

    Article  CAS  Google Scholar 

  • Farber DB, Lolley RN (1977) Influence of visual cell maturation or degeneration on cyclic AMP content of retinal neurons. J Neurochem 29(1):167–170

    Article  CAS  Google Scholar 

  • Fassina G, Aluigi MG, Gentleman S, Wong P, Cai T, Albini A, Noonan DM (1997) The cAMP analog 8-Cl-cAMP inhibits growth and induces differentiation and apoptosis in retinoblastoma cells. Int J Cancer 72(6):1088–1094

    Article  CAS  Google Scholar 

  • Hollingsworth TJ, Gross AK (2012) Defective trafficking of rhodopsin and its role in retinal degenerations. Int Rev Cell Mol Biol 293:1–44

    Article  CAS  Google Scholar 

  • Insel PA, Zhang L, Murray F, Yokouchi H, Zambon AC (2012) Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol (Oxf) 204(2):277–287

    Article  CAS  Google Scholar 

  • Komeima K, Rogers BS, Lu L, Campochiaro PA (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103(30):11300–11305

    Article  CAS  Google Scholar 

  • Liu C, Li Y, Peng M, Laties AM, Wen R (1999) Activation of caspase-3 in the retina of transgenic rats with the rhodopsin mutation s334ter during photoreceptor degeneration. J Neurosci 19(12):4778–4785

    Article  CAS  Google Scholar 

  • Lolley RN, Schmidt SY, Farber DB (1974) Alterations in cyclic AMP metabolism associated with photoreceptor cell degeneration in the C3H mouse. J Neurochem 22(5):701–707

    Article  CAS  Google Scholar 

  • Nakao T, Tsujikawa M, Notomi S, Ikeda Y, Nishida K (2012) The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 7(4):e32472

    Article  CAS  Google Scholar 

  • Nir I, Haque R, Iuvone PM (2001) Regulation of cAMP by light and dopamine receptors is dysfunctional in photoreceptors of dystrophic retinal degeneration slow(rds) mice. Exp Eye Res 73(2):265–272

    Article  CAS  Google Scholar 

  • Nir I, Harrison JM, Haque R, Low MJ, Grandy DK, Rubinstein M, Iuvone PM (2002) Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci 22(6):2063–2073

    Article  CAS  Google Scholar 

  • Paquet-Durand F, Azadi S, Hauck SM, Ueffing M, van Veen T, Ekstrom P (2006) Calpain is activated in degenerating photoreceptors in the rd1 mouse. J Neurochem 96(3):802–814

    Article  CAS  Google Scholar 

  • Paskowitz DM, LaVail MM, Duncan JL (2006) Light and inherited retinal degeneration. Br J Ophthalmol 90(8):1060–1066

    Article  CAS  Google Scholar 

  • Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44–52

    Article  CAS  Google Scholar 

  • Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekström P, Paquet-Durand F (2008) Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 38(3):253–269

    Article  CAS  Google Scholar 

  • Sanyal S, Fletcher R, Liu YP, Aguirre G, Chader G (1984) Cyclic nucleotide content and phosphodiesterase activity in the rds mouse (020/A) retina. Exp Eye Res 38(3):247–256

    Article  CAS  Google Scholar 

  • Stenkamp DL, Iuvone PM, Adler R (1994) Photomechanical movements of cultured embryonic photoreceptors: regulation by exogenous neuromodulators and by a regulable source of endogenous dopamine. J Neurosci 14(5. Pt 2):3083–3096

    Article  CAS  Google Scholar 

  • Swaroop A, Kim D, Forrest D (2010) Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci 11(8):563–576

    Article  CAS  Google Scholar 

  • Traverso V, Bush RA, Sieving PA, Deretic D (2002) Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats. Invest Ophthalmol Vis Sci 43(5):1655–1661

    PubMed  Google Scholar 

  • Weiss ER, Hao Y, Dickerson CD, Osawa S, Shi W, Zhang L, Wong F (1995) Altered cAMP levels in retinas from transgenic mice expressing a rhodopsin mutant. Biochem Biophys Res Commun 216(3):755–761

    Article  CAS  Google Scholar 

  • Wen R, Cheng T, Li Y, Cao W, Steinberg RH (1996) Alpha 2-adrenergic agonists induce basic fibroblast growth factor expression in photoreceptors in vivo and ameliorate light damage. J Neurosci 16(19):5986–5992

    Article  CAS  Google Scholar 

  • Wiechmann AF, O’Steen WK (1992) Melatonin increases photoreceptor susceptibility to light-induced damage. Invest Ophthalmol Vis Sci 33(6):1894–1902

    CAS  PubMed  Google Scholar 

  • Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11(4):273–284

    Article  CAS  Google Scholar 

  • Yang LP, Wu LM, Guo XJ, Tso MO (2007) Activation of endoplasmic reticulum stress in degenerating photoreceptors of the rd1 mouse. Invest Ophthalmol Vis Sci 48(11):5191–5198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Charish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charish, J. (2019). cAMP and Photoreceptor Cell Death in Retinal Degeneration. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_49

Download citation

Publish with us

Policies and ethics