Skip to main content

Irreversible Langevin MCMC on Lie Groups

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

Abstract

It is well-known that irreversible MCMC algorithms converge faster to their stationary distributions than reversible ones. Using the special geometric structure of Lie groups \(\mathcal G\) and dissipation fields compatible with the symplectic structure, we construct an irreversible HMC-like MCMC algorithm on \(\mathcal G\), where we first update the momentum by solving an OU process on the corresponding Lie algebra \(\mathfrak g\), and then approximate the Hamiltonian system on \(\mathcal G\times \mathfrak g\) with a reversible symplectic integrator followed by a Metropolis-Hastings correction step. In particular, when the OU process is simulated over sufficiently long times, we recover HMC as a special case. We illustrate this algorithm numerically using the example \(\mathcal G= SO(3)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a non-matrix group, simply replace \(\mathrm {Tr}\left( \partial _x V^T \bar{g}_k \xi _i\right) \) with \(e_i|_g(V)\).

References

  1. Arnaudon, Alexis, De Castro, A.L., Holm, D.D.: Noise and dissipation on coadjoint orbits. J. Nonlinear Sci. 28(1), 91–145 (2018)

    Article  MathSciNet  Google Scholar 

  2. Arnaudon, A., Takao, S., Networks of coadjoint orbits: from geometric to statistical mechanics, arXiv preprint arXiv:1804.11139 (2018)

  3. Barp, A.: Hamiltonian Monte Carlo On Lie Groups and Constrained Mechanics on Homogeneous Manifolds, arXiv preprint arXiv:1903.04662 (2019)

  4. Barp, Alessandro, Briol, François-Xavier, Kennedy, A.D., Girolami, M.: Geometry and dynamics for markov chain monte carlo. Annu. Rev. Stat. Appl. 5, 451–471 (2018)

    Article  MathSciNet  Google Scholar 

  5. Barp, A., Kennedy, A.D., Girolami, M.: Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via Symplectic Reduction, arXiv preprint arXiv:1903.02699 (2019)

  6. Betancourt, Michael, Byrne, Simon, Livingstone, Sam, Girolami, Mark, et al.: The geometric foundations of hamiltonian monte carlo. Bernoulli 23(4A), 2257–2298 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bismut, J.M.: Méecanique aléeatoire lect. Notes Maths 966, 19881 (1981)

    Google Scholar 

  8. Bou-Rabee, N., Vanden-Eijnden, E.: A patch that imparts unconditional stability to certain explicit integrators for SDEs, arXiv preprint arXiv:1010.4278 (2010)

  9. Chen, X., Cruzeiro, A.B., Ratiu, T.S.: Constrained and stochastic variational principles for dissipative equations with advected quantities, arXiv preprint arXiv:1506.05024 (2015)

  10. Clark, M.A., Kennedy, A.D.: Accelerating staggered-fermion dynamics with the rational hybrid Monte Carlo algorithm. Phys. Rev. D 75(1), 011502 (2007)

    Article  Google Scholar 

  11. Clark, M.A., Kennedy, A.D., Silva, P.J.: Tuning HMC using Poisson brackets. arXiv preprint arXiv:0810.1315 (2008)

  12. Cruzeiro, A.B., Holm, D.D., Ana Bela Cruzeiro: Momentum maps and stochastic clebsch action principles. Commun. Math. Phys. 357(2), 873–912 (2018)

    Article  MathSciNet  Google Scholar 

  13. Duane, Simon, Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid monte carlo. Phys. lett. B 195(2), 216–222 (1987)

    Article  MathSciNet  Google Scholar 

  14. Duncan, A.B., Lelievre, T., Pavliotis, G.A.: Variance reduction using nonreversible Langevin samplers. J. Stat. Phys. 163(3), 457–491 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kennedy, A.D., Rossi, P.: Classical mechanics on group manifolds. Nucl. Phys. B 327, 782–790 (1989)

    Article  Google Scholar 

  16. Kennedy, A.D., Silva, P.J., Clark, M.A.: Shadow Hamiltonians, poisson brackets, and gauge theories. Phys. Rev. D 87(3), 034511 (2013)

    Article  Google Scholar 

  17. Mathias, Rousset, Gabriel, Stoltz, Tony, L.: Free Energy Computations: A Mathematical Perspective. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  18. Neal, R.M., et al.: MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo 2(11), 2 (2011)

    MATH  Google Scholar 

  19. Ottobre, M.: Markov Chain Monte Carlo and irreversibility. Rep. Math. Phys. 77(3), 267–292 (2016)

    Article  MathSciNet  Google Scholar 

  20. Ottobre, M., Pillai, N.S., Pinski, F.J., Stuart, A.M., et al.: A function space HMC algorithm with second order Langevin diffusion limit. Bernoulli 22(1), 60–106 (2016)

    Article  MathSciNet  Google Scholar 

  21. Rey-Bellet, L., Spiliopoulos, K.: Irreversible langevin samplers and variance reduction: a large deviations approach. Nonlinearity 28(7), 2081 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank A. Duncan for the useful insights that helped improve this work.AA acknowledges EPSRC funding through award EP/N014529/1 via the EPSRCCentre for Mathematics of Precision Healthcare. ST acknowledges the Schrödinger scholarship scheme for funding during this work. AB was supported by a Roth Scholarship funded by the Department of Mathematics, Imperial College London, by EPSRC Fellowship (EP/J016934/3) and by The Alan Turing Institute under the EPSRC grant [EP/N510129/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Barp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arnaudon, A., Barp, A., Takao, S. (2019). Irreversible Langevin MCMC on Lie Groups. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics