Skip to main content

Optical Coherence Tomography and Optic Nerve Edema

  • Chapter
  • First Online:
OCT and Imaging in Central Nervous System Diseases

Abstract

Optical coherence tomography (OCT) continues to advance our understanding of the various diseases characterized by optic disc edema. In acute papilledema, OCT has demonstrated subretinal fluid extending from the optic disc to the subfoveal region, assisting in our understanding of the pathophysiology of vision loss in these cases. In evolving cases of optic disc edema, OCT of the RNFL can thus be an objective measurement of nerve swelling. By analyzing the ganglion cell layer complex (GCC), OCT can now help detect early axonal damage in optic nerve disease, even when the RNFL is edematous, and may be helpful in predicting visual outcomes. Finally, OCT has also proven to be a reliable tool in assisting clinicians in differentiating between cases of frank papilledema and pseudopapilledema, including that which occurs in optic nerve head drusen, vitreopapillary traction, Bergmeister papilla and myelinated nerve fiber layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Graefe A. Ueber Komplikation von Sehnervenentzundung mit Gehirnkrankheiten. Arch F Ophth. 1860;7:58–71.

    Google Scholar 

  2. Paton L, Holmes G. The pathology of papilledema. Brain. 1911;33:289–432.

    Article  Google Scholar 

  3. Fry WE. The pathology of papilledema. Am J Ophthalmol. 1931;14:874–83.

    Article  Google Scholar 

  4. Hedges TR. A correlative study of orbital vascular and intracranial pressure in the rhesus monkey. Trans Am Ophthalmol Soc. 1963;61:589–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure III: a pathologic study of experimental papilledema. Arch Ophthalmol. 1977;95:1448–57.

    Article  CAS  PubMed  Google Scholar 

  6. Samuels B. Histopathology of papilledema. Am J Ophthalmol. 1938;21:1242–8.

    Article  Google Scholar 

  7. Hoye VJ III, Berrocal AM, Hedges TR III, Amaro-Quireza ML. Optic coherence tomography demonstrates subretinal macular edema from papilledema. Arch Ophthalmol. 2001;119:1287–9.

    Article  PubMed  Google Scholar 

  8. Morris AT, Sanders MD. Macular changes resulting from papilloedema. Br J Ophthalmol. 1980;64:211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corbett JJ, Jacobson DM, Mauer RC, Thompson HS. Enlargement of the blind spot caused by papilledema. Am J Ophthalmol. 1988;105:261–5.

    Article  CAS  PubMed  Google Scholar 

  10. Gittinger JW Jr, Asdourian GK. Macular abnormalities in papilledema from pseudotumor cerebri. Ophthalmology. 1989;96:192–4.

    Article  PubMed  Google Scholar 

  11. Jamerson SC, Arunagiri G, Ellis BD, Leys MJ. Intravitreal bevacizumab for the treatment of choroidal neovascularization secondary to pseudotumor cerebri. Int Ophthalmol. 2009;29:183–5.

    Article  PubMed  Google Scholar 

  12. Jamison RR. Subretinal neovascularization and papilledema associated with pseudotumor cerebri. Am J Ophthalmol. 1978;85:78–81.

    Article  CAS  PubMed  Google Scholar 

  13. Mas AM, Villegas VM, Garcia JM, Acevedo S, Serrrano L. Intravitreal bevacizumab for peripapillary subretinal neovascular membrane associated to papilledema: a case report. P R Health Sci J. 2012;31:148–50.

    PubMed  Google Scholar 

  14. Lee IJ, Maccheron LJ, Kwan AS. Intravitreal bevacizumab in the treatment of peripapillary choroidal neovascular membrane secondary to idiopathic intracranial hypertension. J Neuroophthalmol. 2013;33:155–7.

    Article  PubMed  Google Scholar 

  15. Morse PH, Leveille AS, Antel JP, Burch JV. Bilateral juxtapapillary subretinal neovascularization associated with pseudotumor cerebri. Am J Ophthalmol. 1981;91:312–7.

    Article  CAS  PubMed  Google Scholar 

  16. Caballero-Presencia A, Diaz-Guia E, Martinex-Perez M, Lopez-Lopez J. Neo-vascularisation sous-retinienne jiuxtapapillaire bilaterale dans un cas de pseudotumor cerebri. J Fr Ophtalmol. 1986;9:105–10.

    CAS  PubMed  Google Scholar 

  17. Sathornsumetee B, Webb A, Hill DL, Newman NJ, Biousse V. Subretinal hemorrhage from a peripapillary choroidal neovascular membrane in papilledema caused by idiopathic intracranial hypertension. J Neuroophthalmol. 2006;26:197–9.

    Article  PubMed  Google Scholar 

  18. Kaeser PF, Borruat FX. Peripapillary neovascular membrane: a rare cause of acute vision loss in pediatric idiopathic intracranial hypertension. J AAPOS. 2011;15:83–6.

    Article  PubMed  Google Scholar 

  19. Troost BT, Sufit RL, Grand MG. Sudden monocular visual loss in pseudotumor cerebri. Arch Neurol. 1979;36:440–2.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez MR, Ophir A. Optical coherence tomography as an adjunctive tool for diagnosing papilledema in young patients. J Pediatr Ophthalmol Strabismus. 2011;48:174–81.

    Article  PubMed  Google Scholar 

  21. Karam EZ, Hedges TR. Optical coherence tomography of the retinal nerve fibre layer in mild papilloedema and pseudopapilloedema. Br J Ophthalmol. 2005;89:294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fard MA, Fakhree S, Abdi P, Hassanpoor N, Subramanian PS. Quantification of peripapillary total retinal volume in pseudopapilledema and mild papilledema using spectral-domain optical coherence tomography. Am J Ophthalmol. 2014;158:136–43.

    Article  PubMed  Google Scholar 

  23. Kupersmith MJ, Sibony P, Mandel G, Durbin M, Kardon RH. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci. 2011;52(9):6558–64.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sibony P, Kupersmith MJ, Rohlf FJ. Shape analysis of the peripapillary RPE layer in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2011;52(11):7987–95.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sibony P, Kupersmith MJ, Honkanen R, Rohlf FJ, Torab-Parhiz A. Effects of lowering cerebrospinal fluid pressure on the shape of the peripapillary retina in intracranial hypertension. Invest Ophthalmol Vis Sci. 2014;55(12):8223–31.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang JK, Kardon RH, Ledolter J, Sibony PA, Kupersmith MJ, Garvin MK, OCT Sub-Study Committee and the NORDIC Idiopathic. Peripapillary retinal pigment epithelium layer shape changes from acetazolamide treatment in the idiopathic intracranial hypertension treatment trial. Intracranial Hypertension Study Group. Invest Ophthalmol Vis Sci. 2017;58(5):2554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sibony P, Straachovsky M, Honkanen R, Kupersmith MJ. Optical coherence tomography shape analysis of the peripapillary retinal pigment epithelium layer in presumed optic nerve sheath meningiomas. J Neuroophthalmol. 2014;34:130–6.

    Article  PubMed  Google Scholar 

  28. Savini G, Bellusci C, Carbonelli M, Zanini M, Carelli V, Sadun AA, Barboni P. Detection and quantification of retinal nerve fiber layer thickness in optic disc edema using stratus OCT. Arch Ophthalmol. 2006;124:1111–7.

    Article  PubMed  Google Scholar 

  29. Monteiro ML, Afonso CL. Macular thickness measurements with frequency domain-OCT for quantification of axonal loss in chronic papilledema from pseudotumor cerebri syndrome. Eye (Lond). 2014;28:390–8.

    Article  CAS  Google Scholar 

  30. Perry VH, Lund RD. Evidence that the lamina cribrosa prevents intraretinal myelination of retinal ganglion cell axons. J Neurocytol. 1990;19:265–72.

    Article  CAS  PubMed  Google Scholar 

  31. Burkholder BM, Osborne B, Loguidice MJ, Bisker E, Frohman TC, Conger A, Ratchford JN, Warner C, Markowitz CE, Jacobs DA, Galetta SL, Cutter GR, Maguire MG, Calabresi PA, Balcer LJ, Frohman EM. Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Arch Neurol. 2009;66:1366–72.

    Article  PubMed  Google Scholar 

  32. Papchenko T, Grainger BT, Savino PJ, Gamble GD, Danesh-Meyer HV. Macular thickness predictive of visual field sensitivity in ischaemic optic neuropathy. Acta Ophthalmol. 2012;90:e463–9.

    Article  PubMed  Google Scholar 

  33. Aggarwal D, Tan O, Huang D, Sadun AA. Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:4539–45.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Larrea BA, Iztueta MG, Indart LM, Alday NM. Early axonal damage detection by ganglion cell complex analysis with optical coherence tomography in nonarteritic anterior ischaemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2014;252:1839–46.

    Article  PubMed  Google Scholar 

  35. Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E, Crainiceanu CM, Durbin MK, Oakley JD, Meyer SA, Frohman EM, Calabresi PA. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain. 2012;135:521–33.

    Article  PubMed  Google Scholar 

  36. Marzoli SB, Ciasca P, Curone M, Cammarata G, Melzi L, Criscuoli A, Bussone G, D’Amico D. Quantitative analysis of optic nerve damage in idiopathic intracranial hypertension (IIH) at diagnosis. Neurol Sci. 2013;34(Suppl 1):S143–5.

    Article  PubMed  Google Scholar 

  37. Optical Coherence Tomography Substudy Committee, NORDIC Idiopathic Intracranial Hypertension Study Group. Papilledema outcomes from the optical coherence tomography substudy of the idiopathic intracranial hypertension treatment trial. Ophthalmology. 2015;122(9):1939–45.

    Article  Google Scholar 

  38. Chen JJ, Thurtell MJ, Longmuir RA, Garvin MK, Wang JK, Wall M, Kardon RH. Causes and prognosis of visual acuity at the time of initial presentation in idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci. 2015;56(6):3850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Athappilly G, Garcia-Basterra I, Machado-Miller F, Hedges TR, Mendoza-Santiesteban C, Vuong L. Ganglion cell complex analysis as a potential indicator of early neuronal loss in idiopathic intracranial hypertension. Neuroophthalmology. 2018;43(1):10–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hayreh SS. Anterior ischemic optic neuropathy. Arch Neurol. 1981;38:675–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hayreh SS. Fluids in the anterior part of the optic nerve in health and disease. Surv Ophthalmol. 1978;23:1–25.

    Article  CAS  PubMed  Google Scholar 

  42. Contreras I, Noval S, Rebolleda G, Munoz-Negrete FJ. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology. 2007;114:2338–44.

    Article  PubMed  Google Scholar 

  43. Contreras I, Rebolleda G, Noval S, Munoz-Negrete FJ. Optic disc evaluation by optical coherence tomography in nonarteritic anterior ischemic optic neuropathy. IOVS. 2007;48:4087–92.

    Google Scholar 

  44. Bellusci C, Savini G, Carbonelli M, Carelli V, Sadun AA, Barboni P. Retinal nerve fiber layer thickness in nonarteritic ischemic optic neuropathy: OCT characterization of the acute and resolving phases. Graefes Arch Clin Exp Ophthalmol. 2008;246:641–7.

    Article  PubMed  Google Scholar 

  45. Quigley HA, Miller NR, Green WR. The pattern of optic nerve fiber loss in anterior ischemic optic neuropathy. Am J Ophthalmol. 1985;100:769–76.

    Article  CAS  PubMed  Google Scholar 

  46. Traustason OI, Feldon SE, Leemaster JE, Weiner JM. Anterior ischemic optic neuropathy: classification of field defects by Octopus automated static perimetry. Graefes Arch Clin Exp Ophthalmol. 1988;226:206–12.

    Article  CAS  PubMed  Google Scholar 

  47. Hayreh SS, Zimmerman MB. Visual field abnormalities in nonarteritic anterior ischemic optic neuropathy: their pattern and prevalence at initial examination. Arch Ophthalmol. 2005;23:1554–62.

    Article  Google Scholar 

  48. Hayreh SS, Zimmerman MB. Optic disc edema in non-arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2007;245:1107–21.

    Article  PubMed  Google Scholar 

  49. Alasil T, Tan O, Lu ATH, Huang D, Sadun AA. Correlation of Fourier domain optical coherence tomography retinal nerve fiber layer maps with visual fields in nonarteritic ischemic optic neuropathy. Ophthalmic Surg Lasers Imaging. 2008;39:S71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hedges TR III, Vuong LN, Gonzalez-Garcia AO, Mendoza-Santiesteban CE, Amaro-Quierza ML. Subretinal fluid from anterior ischemic optic neuropathy demonstrated by optical coherence tomography. Arch Ophthalmol. 2008;126:812–5.

    Article  PubMed  Google Scholar 

  51. Fernandez-Buenaga R, Rebolleda G, Munoz-Negrete FJ, Contreras I, Casas-Llera P. Macular thickness. Ophthalmology. 2009;116:1587–1587.e3.

    Article  PubMed  Google Scholar 

  52. Erlich-Malona N, Mendoza-Santiesteban CE, Hedges TR 3rd, Patel N, Monaco C, Cole E. Distinguishing ischaemic optic neuropathy from optic neuritis by ganglion cell analysis. Acta Ophthalmol. 2016;94(8):721–6.

    Article  Google Scholar 

  53. Miller NR, Arnold AC. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy. Eye. 2015;29:65–79.

    Article  CAS  PubMed  Google Scholar 

  54. Ho JK, Stanford MP, Shariati MA, Dalal R, Liao YJ. Optical coherence tomography study of experimental anterior ischemic optic neuropathy and histologic confirmation. Invest Ophthalmol Vis Sci. 2013;54:5981–8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wright-Mayes E, Cole ED, Dang S, Novais EA, Vuong L, Mendoza-Santiesteban C, Duker JS, Hedges TR 3rd. Optical coherence tomography angiography in non-arteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2017;37(4):358–64.

    Article  PubMed  Google Scholar 

  56. Song Y, Min JY, Mao L, Gong YY. Microvasculature dropout detected by the optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. Lasers Surg Med. 2018;50(3):194–201.

    Article  PubMed  Google Scholar 

  57. Barboni P, Savini G, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology. 2005;112:120–6.

    Article  PubMed  Google Scholar 

  58. Zhang Y, Huang H, Wei S, et al. Characterization of macular thickness changes in Leber’s hereditary optic neuropathy by optical coherence tomography. BMC Ophthalmol. 2014;14:105.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Savini G, Barboni P, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology. 2005;112:127–31.

    Article  PubMed  Google Scholar 

  60. Hedges TR, Gobuty M, Manfreddy RA, Erlich-Malona N, Monaco C, Mendoza-Santiesteban CE. The optic coherence tomography profile of Leber hereditary optic neuropathy. Neuroophthalmology. 2016;40(3):107–12.

    Article  PubMed  PubMed Central  Google Scholar 

  61. De Rojas JO, Rasool N, Chen RW, Horowitz J, Odel JG. Optical coherence tomography angiography in Leber hereditary optic neuropathy. Neurology. 2016;87(19):2065–6.

    Article  PubMed  Google Scholar 

  62. Matsuzaki M, Hirami Y, Uyama H, Kurimoto Y. Optic coherence tomography angiography changes in radial peripapillary capillaries in Leber hereditary optic neuropathy. Am J Ophthalmol Case Rep. 2018;9:51–5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Barboni P, Savini G, Cascavilla ML. Early macula retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation. Am J Ophthalmol. 2014;158(3):62–636.

    Article  Google Scholar 

  64. Moura F, Monteiro M. Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patient with tobacco-alcohol-induced toxic optic neuropathy. Indian J Ophthalmol. 2010;58(2):143–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kee C, Hwang JM. Optical coherence tomography in a patient with tobacco-alcohol amblyopia. Eye (Lond). 2008;22(3):469–70.

    Article  CAS  Google Scholar 

  66. Fujihara M, Kikuchi M, Kurimoto Y. Methanol-induced retinal toxicity patient examined by optic coherence tomography. Jpn J Ophthalmol. 2006;50:239–41.

    Article  PubMed  Google Scholar 

  67. Eells JT, Henry MM, Lewandowski MF, Seme MT, Murray TG. Development and characterization of a rodent model of methanol induced retinal and optic nerve. Neurotoxicology. 2000;21:321–30.

    CAS  PubMed  Google Scholar 

  68. Klein KA, Warren AK, Baumal CR, Hedges TR III. Optical coherence tomography findings in methanol toxicity. Int J Retina Vitreous. 2017;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sebag J. Anatomy and pathology of the vitreo-retinal interface. Eye. 1992;6(6):541–52.

    Article  PubMed  Google Scholar 

  70. Schepens CL. Clinical aspects of pathologic changes in the vitreous body. Am J Ophthalmol. 1954;38:8–21.

    Article  CAS  PubMed  Google Scholar 

  71. Kroll P, Weigrand W, Schmidt J. Vitreopapillary traction in proliferative diabetic vitreoretinopathy. Br J Ophthalmol. 1999;83:261–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rumelt S, Karatas M, Pikkel J, Majlin M, Ophir A. Optic disc traction syndrome associated with central retinal vein occlusion. Arch Ophthalmol. 2003;121:1093–7.

    Article  PubMed  Google Scholar 

  73. Modarres M, Sanjari MS, Falavarjani KG. Vitrectomy and release of presumed epipapillary vitreous traction for treatment of nonarteritic anterior ischemic optic neuropathy associated with partial posterior vitreous detachment. Ophthalmology. 2007;114(2):340–4.

    Article  PubMed  Google Scholar 

  74. Katz B, Hoyt WF. Intrapapillary and peripapillary hemorrhage in young patients with incomplete posterior vitreous detachment: signs of vitreopapillary traction. Ophthalmology. 1995;102:349–54.

    Article  CAS  PubMed  Google Scholar 

  75. Wisotsky BJ, Magat-Gordon CB, Puklin JE. Vitreopapillary traction as a cause of elevated optic nerve head. Am J Ophthalmol. 1998;126:137–9.

    Article  CAS  PubMed  Google Scholar 

  76. Hedges TR, Flattem NL, Bagga A. Vitreopapillary traction confirmed by optical coherence tomography. Arch Ophthalmol. 2006;124(2):349–54.

    Article  Google Scholar 

  77. Houle E, Miller NR. Bilateral vitreopapillary traction demonstrated by optical coherence tomography mistaken for papilledema. Case Rep Ophthalmol Med. 2012;2012:682659.

    PubMed  PubMed Central  Google Scholar 

  78. Lam BL, Morais CG Jr, Pasol J. Drusen of the optic disc. Curr Neurol Neurosci Rep. 2008;8:404–8.

    Article  PubMed  Google Scholar 

  79. Friedman AH, Gartner S, Modi SS. Drusen of the optic disc: a retrospective study in cadaver eyes. Br J Ophthalmol. 1975;59:413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Auw-Haedrich C, Staubach F, Witschel H. Major review: optic disk drusen. Surv Ophthalmol. 2002;47:515–32.

    Article  PubMed  Google Scholar 

  81. Johnson LN, Diehl ML, Hamm CW, Sommerville DN, Petroski GF. Differentiating optic disc edema from optic nerve head drusen on optical coherence tomography. Arch Ophthalmol. 2009;127:45–9.

    Article  PubMed  Google Scholar 

  82. Katz BJ, Pomeranz HD. Visual field defects and retinal nerve fiber layer defects in eyes with buried optic nerve drusen. Am J Ophthalmol. 2006;141:248–53.

    Article  PubMed  Google Scholar 

  83. Roh S, Noecker RJ, Schuman JS, Hedges TR III, Weiter JJ, Mattox C. Effect of optic nerve head drusen on nerve fiber layer thickness. Ophthalmology. 1998;105:878–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee KM, Woo SJ, Hwang JM. Differentiation of optic nerve head drusen and optic disc edema with spectral domain optical coherence tomography. Ophthalmology. 2011;118:971–7.

    Article  PubMed  Google Scholar 

  85. Merchant KY, Su D, Park SC, Qayum S, Banik R, Liebmann JM, Ritch R. Enhanced depth imaging optical coherence tomography of optic nerve head drusen. Ophthalmology. 2013;120:1409–14.

    Article  PubMed  Google Scholar 

  86. Salvatore S, Iannetti L, Fragiotta S, Vingolo EM. Optical coherence tomography and myelinated retinal nerve fibers: anatomical description and comparison between time-domain and spectral domain OCT. Minerva Oftalmol. 2011;53:31–8.

    Google Scholar 

  87. Nourinia R, Behdad B, Montahaei T. Optical coherence tomography findings in a patient with myelinated retinal nerve fiber layer. J Ophthalmic Vis Res. 2013;8:280–1.

    PubMed  PubMed Central  Google Scholar 

  88. Liu JJ, Witkin AJ, Adhi M, Grulkowski I, Kraus MF, Dhalla AH, Lu CD, Hornegger J, Duker JS, Fukimoto JG. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography. PLoS One. 2014;9(7):e102950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vuong, L.N., Hedges, T.R. (2020). Optical Coherence Tomography and Optic Nerve Edema. In: Grzybowski, A., Barboni, P. (eds) OCT and Imaging in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-26269-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26269-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26268-6

  • Online ISBN: 978-3-030-26269-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics