Skip to main content

Introduction to Passive Microwave Retrieval Methods

  • Chapter
  • First Online:
Satellite Precipitation Measurement

Part of the book series: Advances in Global Change Research ((AGLO,volume 67))

Abstract

This chapter introduces the reader to the basic concepts behind the remote sensing of precipitation from passive microwave radiation. Distinctions are drawn between emission-based frameworks that work well over radiometrically cold oceans, scattering methods that work better over land, and the newer optimal estimation methods that incorporate both of these concepts as well as principles adopted from the atmospheric sounding community. The reader is introduced simultaneously to the basic spaceborne sensors, and their evolution, to show how sensors and algorithms have evolved over time, leading to the current GPM satellite concept. This chapter is not a comprehensive review of all the algorithms that have been developed. Instead, it highlights individual algorithms that represent the spectrum of algorithm being employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Article  Google Scholar 

  • Alishouse, J. C., Ferraro, R. R., & Fiore, J. V. (1990). Inference of oceanic rainfall properties from the Nimbus 7 SMMR. Journal of Applied Meteorology, 29, 551–560. https://doi.org/10.1175/1520-0450(1990)029<0551:IOORPF>2.0.CO;2.

    Article  Google Scholar 

  • Aonashi, K., Awaka, J., Hirose, M., Kozu, T., Kubota, T., Liu, G., Shige, S., Kida, S., Seto, S., Takahashi, N., & Takayabu, Y. (2009). GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation. Journal of the Meteorological Society of Japan, 87A, 119–136. https://doi.org/10.2151/jmsj.87A.119.

    Article  Google Scholar 

  • Bohren, C. F., & Huffmann, D. R. (2010). Absorption and scattering of light by small particles. New York: Wiley-Interscience. ISBN:3-527-40664-6.

    Google Scholar 

  • Boukabara, S. A., Garrett, K., Chen, W. C., Iturbide-Sanchez, F., Grassotti, C., Kongoli, C., Chen, R. Y., Liu, Q. H., Yan, B. H., Weng, F. Z., Ferraro, R. R., Kleespies, T. J., & Meng, H. (2011). MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3249–3272. https://doi.org/10.1109/TGRS.2011.2158438.

    Article  Google Scholar 

  • Casella, D., Panegrossi, G., Sanò, P., Dietrich, S., Mugnai, A., Smith, E. A., Tripoli, G. J., Formenton, M., Di Paola, F., Leung, W. H., & Mehta, A. V. (2013). Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements. Part 2: Overcoming database profile selection ambiguity by consideration of meteorological control on microphysics. IEEE Transactions on Geoscience and Remote Sensing, 51, 4650–4671. https://doi.org/10.1109/TGRS.2013.2258161.

    Article  Google Scholar 

  • Casella, D., Amaral, L. M., Dietrich, S., Marra, A. C., Sanò, P., & Panegrossi, G. (2017). The cloud dynamics and radiation database algorithm for AMSR2: Exploitation of the GPM observational dataset for operational applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 3985–4001. https://doi.org/10.1109/JSTARS.2017.2713485.

    Article  Google Scholar 

  • Chang, A. T. C., & Milman, A. S. (1982). Retrieval of ocean surface and atmospheric parameters from multichannel microwave radiometric measurements. IEEE Transactions on Geoscience and Remote Sensing, GE-20, 217–224. https://doi.org/10.1109/TGRS.1982.350402.

    Article  Google Scholar 

  • Conner, M. D., & Petty, G. W. (1998). Validation and intercomparison of SSM/I rain-rate retrieval methods over the continental United States. Journal of Applied Meteorology, 37, 679–700. https://doi.org/10.1175/1520-0450(1998)037<0679:VAIOSI>2.0.CO;2.

    Article  Google Scholar 

  • Evans, K. F., Turk, F. J., Wong, T., & Stephens, G. L. (1995). A Bayesian approach to microwave precipitation profile retrieval. Journal of Applied Meteorology, 34, 260–279. https://doi.org/10.1175/1520-0450-34.1.260.

    Article  Google Scholar 

  • Ferraro, R. R., Grody, N. C., & Marks, G. F. (1994). Effects of surface conditions on rain identification using the SSM/I. Remote Sensing Reviews, 11, 195–209. https://doi.org/10.1080/02757259409532265.

    Article  Google Scholar 

  • Ferraro, R. R., Weng, F., Grody, N. C., & Basist, A. (1996). An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bulletin of the American Meteorological Society, 77, 891–906. https://doi.org/10.1175/1520-0477(1996)077<0891:AEYTSO>2.0.CO;2.

    Article  Google Scholar 

  • Ferraro, R. R., Smith, E. A., Berg, W., & Huffman, G. J. (1998). A screening methodology for passive microwave precipitation retrieval algorithms. Journal of the Atmospheric Sciences, 55, 1583–1600. https://doi.org/10.1175/1520-0469(1998)055<1583:ASMFPM>2.0.CO;2.

    Article  Google Scholar 

  • Ferraro, R. R., Weng, F., Grody, N. C., & Zhao, L. (2000). Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophysical Research Letters, 27, 2669–2672. https://doi.org/10.1029/2000GL011665.

    Article  Google Scholar 

  • Gloerson, P., & Hardis L. (1978). The Scanning Multichannel Microwave Radiometer (SMMR) experiment. Nimbus-7 User’s Guide. NASA Goddard Space Flight Center, 213–245.

    Google Scholar 

  • Green, D. R., Nilsen J. D., Saffle R. E., Holmes D. W., Hudlow M. D., & Ahnert P. R. (1983). RADAP-II, an interim radar data processor. Preprints 21st Conference Radar Meteorology. American Meteorological Society, 404–408.

    Google Scholar 

  • Grody, N. C. (1991). Classification of snow cover and precipitation using the special sensor microwave/imager (SSM/I). Journal of Geophysical Research, 96, 7423–7435. https://doi.org/10.1029/91JD00045.

    Article  Google Scholar 

  • Hilburn, K. A., & Wentz, F. J. (2008). Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA). The Journal of Applied Meteorology and Climatology, 47, 778–794. https://doi.org/10.1175/2007JAMC1635.1.

    Article  Google Scholar 

  • Hollinger, J., Lo R., & Poe G. (1987). Special Sensor Microwave/Imager user’s guide, Naval Research Laboratory, Washington, DC, Sep. 14.

    Google Scholar 

  • Hong, G., Heygster, G., Miao, J., & Kunzi, K. (2005). Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. Journal of Geophysical Research, 110, D05205. https://doi.org/10.1029/2004JD004949.

    Article  Google Scholar 

  • Kidd, C. (1998). On rainfall retrieval using polarization-corrected temperatures. International Journal of Remote Sensing, 19, 981–996. https://doi.org/10.1080/014311698215829.

    Article  Google Scholar 

  • Kummerow, C., & Giglio, L. (1994). A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. Journal of Applied Meteorology, 33, 3–18. https://doi.org/10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2.

    Article  Google Scholar 

  • Kummerow, C., Hong, Y., Olson, W. S., Yang, S., Adler, R. F., McCollum, J., Ferraro, R. R., Petty, G., Shin, D., & Wilheit, T. T. (2001). The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology, 40, 1801–1820. https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    Article  Google Scholar 

  • Kummerow, C. D., Ringerud, S., Crook, J., Randel, D., & Berg, W. (2010). An observationally generated a-priori database for microwave rainfall retrievals. Journal of Atmospheric and Oceanic Technology, 28, 113–130. https://doi.org/10.1175/2010JTECHA1468.1.

    Article  Google Scholar 

  • Kummerow, C. D., Randel, D. L., Kulie, M. S., Wang, N.-Y., Ferraro, R. R., Munchak, S. J., & Petkovic, V. (2015). The evolution of the Goddard profiling algorithm to a fully parametric scheme. Journal of Atmospheric and Oceanic Technology, 32, 2265–2280. https://doi.org/10.1175/JTECH-D-15-0039.1.

    Article  Google Scholar 

  • Kuo, K., Olson, W. S., Johnson, B. T., Grecu, M., Tian, L., Clune, T. L., van Aartsen, B. H., Heymsfield, A. J., Liao, L., & Meneghini, R. (2016). The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. Journal of Applied Meteorology and Climatology, 55, 691–708. https://doi.org/10.1175/JAMC-D-15-0130.1.

    Article  Google Scholar 

  • Laviola, S., & Levizzani, V. (2011). The 183-WSL fast rain rate retrieval algorithm. Part I: Retrieval design. Atmospheric Research, 99, 443–461. https://doi.org/10.1016/j.atmosres.2010.11.013.

    Article  Google Scholar 

  • Liou, K. N. (2002). An introduction to atmospheric radiation (2nd ed., p. 583). New York: Academic Press. ISBN: 9780124514515.

    Google Scholar 

  • Liu, G. (2004). Approximation of single scattering properties of ice and snow particles for high microwave frequencies. Journal of the Atmospheric Sciences, 61, 2441–2456. https://doi.org/10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    Article  Google Scholar 

  • Marzano, F. S., Mugnai, A., Panegrossi, G., Perdicca, N., Smith, E. A., & Turk, F. J. (1999). Bayesian estimation of precipitating cloud parameters from combined measurements of space-borne microwave radiometer and radar. IEEE Transactions on Geoscience and Remote Sensing, 37, 593–613. https://doi.org/10.1109/36.739124.

    Article  Google Scholar 

  • Matsui, T., Iguchi, T., Li, X., Han, M., Tao, W., Petersen, W., L'Ecuyer, T., Meneghini, R., Olson, W., Kummerow, C. D., Hou, A. Y., Schwaller, M. R., Stocker, E. F., & Kwiatkowski, J. (2013). GPM satellite simulator over ground validation sites. Bulletin of the American Meteorological Society, 94, 1653–1660. https://doi.org/10.1175/BAMS-D-12-00160.1.

    Article  Google Scholar 

  • Meissner, T., & Wentz, F. J. (2012). The emissivity of the ocean surface between 6 – 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3004–3026. https://doi.org/10.1109/TGRS.2011.2179662.

    Article  Google Scholar 

  • Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330(3), 377–445.

    Article  Google Scholar 

  • Mishchenko, M. I., Travis, L. D., & Mackowski, D. W. (1996). T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy & Radiative Transfer, 55, 535–575. https://doi.org/10.1016/0022-4073(96)00002-7.

    Article  Google Scholar 

  • Mugnai, A., Cooper, H. J., Smith, E. A., & Tripoli, G. J. (1990). Simulation of microwave brightness temperatures of an evolving hailstorm at SSM/I frequencies. Bulletin of the American Meteorological Society, 71, 2–13. https://doi.org/10.1109/36.739124.

    Article  Google Scholar 

  • Olson, W. S. (1987). Estimation of rainfall rates in tropical cyclones by passive microwave radiometry. Ph.D. Thesis, University of Wisconsin, 282 pp.

    Google Scholar 

  • Olson, W. S. (1989). Physical retrieval of rainfall rates over the ocean by multispectral microwave radiometry: Application to tropical cyclones. Journal of Geophysical Research, 94, 2267–2280. https://doi.org/10.1029/JD094iD02p02267.

    Article  Google Scholar 

  • Panegrossi, G., Dietrich, S., Marzano, F. S., Mugnai, A., Smith, E. A., Xiang, X., Tripoli, G. J., Wang, P. K., & Poiares Baptista, J. P. V. (1998). Use of cloud model microphysics for passive microwave-based precipitation retrieval: Significance of consistency between model and measurement manifolds. Journal of the Atmospheric Sciences, 55, 1644–1673. https://doi.org/10.1175/1520-0469(1998)055<1644:UOCMMF>2.0.CO;2.

    Article  Google Scholar 

  • Rodgers, E., & Siddalingaiah, H. (1983). The utilization of Nimbus-7 SMMR measurements to delineate rainfall over land. Journal of Climate and Applied Meteorology, 22, 1753–1763. https://doi.org/10.1175/1520-0450(1983)022<1753:TUONSM>2.0.CO;2.

    Article  Google Scholar 

  • Sanò, P., Panegrossi, G., Casella, D., Di Paola, F., Milani, L., Mugnai, A., Petracca, M., & Dietrich, S. (2015). The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: Description and application to European case studies. Atmospheric Measurement Techniques, 8, 837–857. https://doi.org/10.5194/amt-8-837-2015.

    Article  Google Scholar 

  • Sanò, P., Panegrossi, G., Casella, D., Marra, A. C., Di Paola, F., & Dietrich, S. (2016). The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: Description and verification study over Europe and Africa using GPM and TRMM spaceborne radars. Atmospheric Measurement Techniques, 9, 5441–5460. https://doi.org/10.5194/amt-9-5441-2016.

    Article  Google Scholar 

  • Savage, R. C., & Weinman, J. A. (1975). Preliminary calculations of the upwelling radiance from rain clouds at 37.0 and 19.35 GHz. Bulletin of the American Meteorological Society, 56, 1272–1274.

    Google Scholar 

  • Smith, E. A., Cooper, H. J., Xiang, X., Mugnai, A., & Tripoli, G. J. (1992). Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness-temperature properties of a time-dependent cloud-radiation model. Journal of Applied Meteorology, 31, 506–531. https://doi.org/10.1175/1520-0450(1992)031<0506:FFSPPR>2.0.CO;2.

    Article  Google Scholar 

  • Spencer, R. W. (1986). A satellite passive 37-GHz scattering based method for measuring oceanic rain rates. Journal of Climate and Applied Meteorology, 25, 754–766. https://doi.org/10.1175/1520-0450(1986)025<0754:ASPGSB>2.0.CO;2.

    Article  Google Scholar 

  • Spencer, R. W. (1993). Global oceanic precipitation from the MSU during 1979—91 and comparisons to other climatologies. Journal of Climate, 6, 1301–1326. https://doi.org/10.1175/1520-0442(1993)006<1301:GOPFTM>2.0.CO;2.

    Article  Google Scholar 

  • Spencer, R. W., Goodman, H. M., & Hood, R. E. (1989). Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. Journal of Atmospheric and Oceanic Technology, 6, 254–273. https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    Article  Google Scholar 

  • Stephens, G. L., & Kummerow, C. D. (2007). The remote sensing of clouds and precipitation from space: A review. Journal of the Atmospheric Sciences, 64, 3742–3765. https://doi.org/10.1175/2006JAS2375.1.

    Article  Google Scholar 

  • Surussavadee, C., & Staelin, D. H. (2008). Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather prediction model. Part I: Retrieval design. IEEE Transactions on Geoscience and Remote Sensing, 46, 99–108. https://doi.org/10.1109/TGRS.2007.908302.

    Article  Google Scholar 

  • Ulaby, F. T., Moore, R. K., & Fung, A. K. (1986). Microwave remote sensing: Radar remote sensing and surface scattering and emission theory (1064 pp). Norwood: Artech House, Inc. ISBN:0890061912.

    Google Scholar 

  • Wentz, F. J., & Meissner, T. (2016). Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations. Radio Science, 51, 381–391. https://doi.org/10.1002/2015RS005858.

    Article  Google Scholar 

  • Wentz, F. J., & Spencer, R. W. (1998). SSM/I rain retrievals within a unified all-weather ocean algorithm. Journal of the Atmospheric Sciences, 55, 1613–1627. https://doi.org/10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.

    Article  Google Scholar 

  • Wilheit, T. (1972). The Electrically Scanning Microwave Radiometer (ESMR) experiment. Nimbus-5 user’s guide, NASA/Goddard Space Flight Center, Greenbelt, 59–105.

    Google Scholar 

  • Wilheit, T. (1975). The Electrically Scanning Microwave Radiometer (ESMR) experiment. Nimbus-6 user’s guide, NASA/Goddard Space Flight Center, Greenbelt, 87–108.

    Google Scholar 

  • Wilheit, T. T., Chang, A. T. C., Rao, M. S. V., Rodgers, E. B., & Theon, J. S. (1977). A satellite technique for quantitatively mapping rainfall rates over the ocean. Journal of Applied Meteorology, 16, 551–560. https://doi.org/10.1175/1520-0450(1977)016<0551:ASTFQM>2.0.CO;2.

    Article  Google Scholar 

  • Wilheit, T. T., Chang, A. T. C., King, J. L., Rodgers, E. B., Nieman, R. A., Krupp, B. M., Milman, A. S., Stratigos, J. S., & Siddalingaiah, H. (1982). Microwave radiometric observations near 19.45, 92, and 183 GHz of precipitation in tropical storm Cora. Journal of Applied Meteorology, 21, 1137–1145. https://doi.org/10.1175/1520-0450(1982)021<1137:MRONAG>2.0.CO;2.

    Article  Google Scholar 

  • Wilheit, T. T., Chang, A. T., & Chiu, L. S. (1991). Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions. Journal of Atmospheric and Oceanic Technology, 8, 118–136. https://doi.org/10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    Article  Google Scholar 

  • Wilheit, T. T., Adler, R. F., Avery, S., Barrett, E., Bauer, P., Berg, W., Chang, A. T., Ferriday, J., Grody, N. C., Goodman, S., Kidd, C., Kniveton, D., Kummerow, C. D., Mugnai, A., Olson, W. S., Petty, G., Shibata, A., & Smith, E. A. (1994). Algorithms for the retrieval of rainfall from passive microwave measurements. Remote Sensing Reviews, 11, 163–194. https://doi.org/10.1080/02757259409532264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian D. Kummerow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kummerow, C.D. (2020). Introduction to Passive Microwave Retrieval Methods. In: Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J. (eds) Satellite Precipitation Measurement. Advances in Global Change Research, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-24568-9_7

Download citation

Publish with us

Policies and ethics