Skip to main content

Evolution and Regulation of Limb Regeneration in Arthropods

  • Chapter
  • First Online:
Evo-Devo: Non-model Species in Cell and Developmental Biology

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 68))

Abstract

Regeneration has fascinated both scientists and non-scientists for centuries. Many organisms can regenerate, and arthropod limbs are no exception although their ability to regenerate is a product shaped by natural and sexual selection. Recent studies have begun to uncover cellular and molecular processes underlying limb regeneration in several arthropod species. Here we argue that an evo-devo approach to the study of arthropod limb regeneration is needed to understand aspects of limb regeneration that are conserved and divergent. In particular, we argue that limbs of different species are comprised of cells at distinct stages of differentiation at the time of limb loss and therefore provide insights into regeneration involving both stem cell-like cells/precursor cells and differentiated cells. In addition, we review recent studies that demonstrate how limb regeneration impacts the development of the whole organism and argue that studies on the link between local tissue damage and the rest of the body should provide insights into the integrative nature of development. Molecular studies on limb regeneration are only beginning to take off, but comparative studies on the mechanisms of limb regeneration across various taxa should not only yield interesting insights into development but also answer how this remarkable ability evolved across arthropods and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agata K, Saito Y, Nakajima E (2007) Unifying principles of regeneration I: epimorphosis versus morphallaxis. Develop Growth Differ 49:73–78

    Article  Google Scholar 

  • Alfonso-Gonzalez C, Riesgo-Escovar JR (2018) Fos metamorphoses: lessons from mutants in model organisms. Mech Dev 154:73–81

    Article  CAS  PubMed  Google Scholar 

  • Alwes F, Enjolras C, Averof M (2016) Live imaging reveals the progenitors and cell dynamics of limb regeneration. elife 5:e19766

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai S, Thummel R, Godwin AR, Nagase H, Itoh Y, Li L, Evans R, McDermott J, Seiki M, Sarras MP Jr (2005) Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol 24:247–260

    Article  CAS  PubMed  Google Scholar 

  • Bando T, Mito T, Maeda Y, Nakamura T, Ito F, Watanabe T, Ohuchi H, Noji S (2009) Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration. Development 136:2235–2245

    Article  CAS  PubMed  Google Scholar 

  • Bando T, Ishimaru Y, Kida T, Hamada Y, Matsuoka Y, Nakamura T, Ohuchi H, Noji S, Mito T (2013) Analysis of RNA-Seq data reveals involvement of JAK/STAT signalling during leg regeneration in the cricket Gryllus bimaculatus. Development 140:959–964

    Article  CAS  PubMed  Google Scholar 

  • Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  CAS  PubMed  Google Scholar 

  • Bennett FC, Harvey KF (2006) Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16:2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Bergantinos C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137:1169–1179

    Article  CAS  PubMed  Google Scholar 

  • Blair S, McNeill H (2018) Big roles for Fat cadherins. Curr Opin Cell Biol 51:73–80

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Serras F, Martin-Blanco E, Baguna J (2005) JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev Biol 280:73–86

    Article  CAS  PubMed  Google Scholar 

  • Brautigam SE, Persons MH (2003) The effect of limb loss on the courtship and mating behavior of the wolf spider Pardosa milvina (Araneae: Lycosidae). J Insect Behav 16:571–587

    Article  Google Scholar 

  • Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87

    Article  CAS  PubMed  Google Scholar 

  • Brunner E, Peter O, Schweizer L, Basler K (1997) pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385:829–833

    Article  CAS  PubMed  Google Scholar 

  • Bryant PJ (1971) Regeneration and duplication following operations in situ on the imaginal discs of Drosophila melanogaster. Dev Biol 26:637–651

    Article  CAS  PubMed  Google Scholar 

  • Bryant PJ (1975) Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication. J Exp Zool 193:49–77

    Article  CAS  PubMed  Google Scholar 

  • Bryant PJ, Schubiger G (1971) Giant and duplicated imaginal discs in a new lethal mutant of Drosophila melanogaster. Dev Biol 24:233–263

    Article  CAS  PubMed  Google Scholar 

  • Campbell G, Tomlinson A (1995) Initiation of the proximodistal axis in insect legs. Development 121:619–628

    CAS  PubMed  Google Scholar 

  • Chablais F, Jazwinska A (2010) IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 137:871–879

    Article  CAS  PubMed  Google Scholar 

  • Chou J, Ferris AC, Chen T, Seok R, Yoon D, Suzuki Y (2019) Roles of Polycomb group proteins Enhancer of zeste (E(z)) and Polycomb (Pc) during metamorphosis and larval leg regeneration in the flour beetle Tribolium castaneum. Dev Biol 450(1):34–46. https://doi.org/10.1016/j.ydbio.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  • Colombani J, Andersen DS, Leopold P (2012) Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336:582–585

    Article  CAS  PubMed  Google Scholar 

  • Colombani J, Andersen DS, Boulan L, Boone E, Romero N, Virolle V, Texada M, Leopold P (2015) Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Curr Biol 25:2723–2729

    Article  CAS  PubMed  Google Scholar 

  • Das S (2015) Morphological, molecular, and hormonal basis of limb regeneration across Pancrustacea. Integr Comp Biol 55:869–877

    Article  PubMed  Google Scholar 

  • Das S, Durica DS (2013) Ecdysteroid receptor signaling disruption obstructs blastemal cell proliferation during limb regeneration in the fiddler crab, Uca pugilator. Mol Cell Endocrinol 365:249–259

    Article  CAS  PubMed  Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  CAS  PubMed  Google Scholar 

  • Donoughe S, Nakamura T, Ewen-Campen B, Green DA, Henderson L, Extavour CG (2014) BMP signaling is required for the generation of primordial germ cells in an insect. Proc Natl Acad Sci USA 111:4133–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145

    Article  CAS  PubMed  Google Scholar 

  • Erezyilmaz DF (2006) Imperfect eggs and oviform nymphs: a history of ideas about the origins of insect metamorphosis. Integr Comp Biol 46:795–807

    Article  PubMed  Google Scholar 

  • Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K (2011) Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 350:301–310

    Article  CAS  PubMed  Google Scholar 

  • French V (1976) Leg regeneration in the cockroach, Blatella germanica. II. Regeneration from a non-congruent tibial graft/host junction. J Embryol Exp Morphol 35:267–301

    CAS  PubMed  Google Scholar 

  • French V (1978) Intercalary regeneration around the circumference of the cockroach leg. J Embryol Exp Morphol 47:53–84

    CAS  PubMed  Google Scholar 

  • French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193:969–981

    Article  CAS  PubMed  Google Scholar 

  • Galko MJ, Krasnow MA (2004) Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2:E239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garelli A, Gontijo AM, Miguela V, Caparros E, Dominguez M (2012) Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336:579–582

    Article  CAS  PubMed  Google Scholar 

  • Garelli A, Heredia F, Casimiro AP, Macedo A, Nunes C, Garcez M, Dias AR, Volonte YA, Uhlmann T, Caparros E, Koyama T, Gontijo AM (2015) Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nat Commun 6:8732

    Article  CAS  PubMed  Google Scholar 

  • Garza-Garcia A, Harris R, Esposito D, Gates PB, Driscoll PC (2009) Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. PLoS One 4:e7123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garza-Garcia AA, Driscoll PC, Brockes JP (2010) Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 50:528–535

    Article  PubMed  Google Scholar 

  • Geng J, Gates PB, Kumar A, Guenther S, Garza-Garcia A, Kuenne C, Zhang P, Looso M, Brockes JP (2015) Identification of the orphan gene Prod 1 in basal and other salamander families. EvoDevo 6:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gontijo AM, Garelli A (2018) The biology and evolution of the Dilp8-Lgr3 pathway: a relaxin-like pathway coupling tissue growth and developmental timing control. Mech Dev 154:44–50

    Article  CAS  PubMed  Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic Press, New York

    Google Scholar 

  • Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in drosophila. Curr Biol 18:435–441

    Article  CAS  PubMed  Google Scholar 

  • Grusche FA, Degoutin JL, Richardson HE, Harvey KF (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350:255–266

    Article  CAS  PubMed  Google Scholar 

  • Hackney JF, Zolali-Meybodi O, Cherbas P (2012) Tissue damage disrupts developmental progression and ecdysteroid biosynthesis in Drosophila. PLoS One 7:e49105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halme A, Cheng M, Hariharan IK (2010) Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 20:458–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada Y, Bando T, Nakamura T, Ishimaru Y, Mito T, Noji S, Tomioka K, Ohuchi H (2015) Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket Gryllus bimaculatus. Development 142:2916–2927

    Article  CAS  PubMed  Google Scholar 

  • Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, Jafar-Nejad H, Halder G (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8:27–36

    Article  CAS  PubMed  Google Scholar 

  • Hariharan IK, Serras F (2017) Imaginal disc regeneration takes flight. Curr Opin Cell Biol 48:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris RE, Setiawan L, Saul J, Hariharan IK (2016) Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. elife 5:e11588

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatem NE, Wang Z, Nave KB, Koyama T, Suzuki Y (2015) The role of juvenile hormone and insulin/TOR signaling in the growth of Manduca sexta. BMC Biol 13:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicklin J, Wolpert L (1973) Positional information and pattern regulation in hydra: the effect of gamma-radiation. J Embryol Exp Morphol 30:741–752

    CAS  PubMed  Google Scholar 

  • Hopkins PM (1989) Ecdysteroids and regeneration in the fiddler crab Uca pugilator. J Exp Zool 252:293–299

    Article  CAS  Google Scholar 

  • Hopkins PM (1993) Regeneration of walking legs in the fiddler-crab Uca-pugilator. Am Zool 33:348–356

    Article  Google Scholar 

  • Hopkins PM (2001) Limb regeneration in the fiddler crab, Uca pugilator: hormonal and growth factor control. Am Zool 41:389–398

    CAS  Google Scholar 

  • Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122:421–434

    Article  CAS  PubMed  Google Scholar 

  • Hussey RG, Thompson WR, Calhoun ET (1927) The influence of X-rays on the development of Drosophila larvae. Science 66:65–66

    Article  CAS  PubMed  Google Scholar 

  • Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr Opin Cell Biol 10:205–219

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Nakamura T, Bando T, Matsuoka Y, Ohuchi H, Noji S, Mito T (2015) Involvement of dachshund and Distal-less in distal pattern formation of the cricket leg during regeneration. Sci Rep 5:8387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaszczak JS, Halme A (2016) Arrested development: coordinating regeneration with development and growth in Drosophila melanogaster. Curr Opin Genet Dev 40:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaszczak JS, Wolpe JB, Dao AQ, Halme A (2015) Nitric oxide synthase regulates growth coordination during Drosophila melanogaster imaginal disc regeneration. Genetics 200:1219–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaszczak JS, Wolpe JB, Bhandari R, Jaszczak RG, Halme A (2016) Growth coordination during Drosophila melanogaster imaginal disc regeneration is mediated by signaling through the relaxin receptor Lgr3 in the prothoracic gland. Genetics 204:703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaźwińska A, Sallin P (2016) Regeneration versus scarring in vertebrate appendages and heart. J Pathol 238:233–246

    Article  PubMed  Google Scholar 

  • Katsuyama T, Comoglio F, Seimiya M, Cabuy E, Paro R (2015) During Drosophila disc regeneration, JAK/STAT coordinates cell proliferation with Dilp8-mediated developmental delay. Proc Natl Acad Sci USA 112:E2327–E2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami Y, Esteban CR, Raya M, Kawakami H, Marti M, Dubova I, Belmonte JCI (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20:3232–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SJ, Abidi SNF, Skinner A, Tian Y, Smith-Bolton RK (2017) The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling. PLoS Genet 13:e1006937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebes A, Sustar A, Kechris K, Li H, Schubiger G, Kornberg TB (2005) Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 132:3753–3765

    Article  CAS  PubMed  Google Scholar 

  • Konopova B, Smykal V, Jindra M (2011) Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 6:e28728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinides N, Averof M (2014) A common cellular basis for muscle regeneration in arthropods and vertebrates. Science 343:788–791

    Article  CAS  PubMed  Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    Article  CAS  PubMed  Google Scholar 

  • Krishnakumaran A (1972) Injury induced molting in Galleria mellonella larvae. Biol Bull 142:281–292

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunieda T, Kurata S, Natori S (1997) Regeneration of Sarcophaga imaginal discs in vitro: implication of 20-hydroxyecdysone. Dev Biol 183:86–94

    Article  CAS  PubMed  Google Scholar 

  • Kunkel JG (1977) Cockroach molting. II. The nature of regeneration-induced delay of molting hormone secretion. Biol Bull 153:145–162

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Maurange C, Ringrose L, Paro R (2005) Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438:234–237

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Sze CC, Kim ER, Suzuki Y (2013) Developmental coupling of larval and adult stages in a complex life cycle: insights from limb regeneration in the flour beetle, Tribolium castaneum. EvoDevo 4:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leontovich AA, Zhang J, Shimokawa K, Nagase H, Sarras MP Jr (2000) A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development 127:907–920

    CAS  PubMed  Google Scholar 

  • Llano E, Pendas AM, Aza-Blanc P, Kornberg TB, Lopez-Otin C (2000) Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem 275:35978–35985

    Article  CAS  PubMed  Google Scholar 

  • Llano E, Adam G, Pendas AM, Quesada V, Sanchez LM, Santamaria I, Noselli S, Lopez-Otin C (2002) Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. J Biol Chem 277:23321–23329

    Article  CAS  PubMed  Google Scholar 

  • Londono R, Sun AX, Tuan RS, Lozito TP (2018) Tissue repair and epimorphic regeneration: an overview. Curr Pathobiol Rep 6:61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhavan K, Schneiderman HA (1969) Hormonal control of imaginal disc regeneration in Galleria mellonella (Lepidoptera). Biol Bull 137:321–331

    Article  CAS  Google Scholar 

  • Maginnis TL (2006a) The costs of autotomy and regeneration in animals: a review and framework for future research. Behav Ecol 17:857–872

    Article  Google Scholar 

  • Maginnis TL (2006b) Leg regeneration stunts wing growth and hinders flight performance in a stick insect (Sipyloidea sipylus). Proc Biol Sci 273:1811–1814

    Article  PubMed  PubMed Central  Google Scholar 

  • Malá J, Sehnal F, Kumaran AK, Granger NA (1987) Effects of starvation, chilling, and injury on endocrine gland function in Galleria mellonella. Arch Insect Biochem Physiol 4:113–128

    Article  Google Scholar 

  • Maruzzo D, Bortolin F (2013) Arthropod regeneration. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin

    Google Scholar 

  • Maruzzo D, Bonato L, Brena C, Fusco G, Minelli A (2005) Appendage loss and regeneration in arthropods: a comparative view. In: Koenemann S, Jener R (eds) Crustacea and arthropod relationships. Crustacean issues 16. CRC Press, Boca Raton

    Google Scholar 

  • Maves L, Schubiger G (1995) Wingless induces transdetermination in developing Drosophila imaginal discs. Development 121:1263–1272

    CAS  PubMed  Google Scholar 

  • Maves L, Schubiger G (1998) A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling. Development 125:115–124

    CAS  PubMed  Google Scholar 

  • McClure KD, Schubiger G (2007) Transdetermination: Drosophila imaginal disc cells exhibit stem cell-like potency. Int J Biochem Cell Biol 39(6):1105–1118

    Google Scholar 

  • McClure KD, Sustar A, Schubiger G (2008) Three genes control the timing, the site and the size of blastema formation in Drosophila. Dev Biol 319:68–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCusker C, Bryant SV, Gardiner DM (2015) The axolotl limb blastema: Cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration 2:54–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Meserve JH, Duronio RJ (2015) Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development 142:2740–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mito T, Inoue Y, Kimura S, Miyawaki K, Niwa N, Shinmyo Y, Ohuchi H, Noji S (2002) Involvement of hedgehog, wingless, and dpp in the initiation of proximodistal axis formation during the regeneration of insect legs, a verification of the modified boundary model. Mech Dev 114:27–35

    Article  CAS  PubMed  Google Scholar 

  • Mitten EK, Jing D, Suzuki Y (2012) Matrix metalloproteinases (MMPs) are required for wound closure and healing during larval leg regeneration in the flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 42:854–864

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S (2004) Involvement of wingless/armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130

    Article  CAS  PubMed  Google Scholar 

  • Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399

    Article  CAS  PubMed  Google Scholar 

  • Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16:558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muneoka K, Han M, Gardiner DM (2008) Regrowing human limbs. Sci Am 298:56–63

    Article  PubMed  Google Scholar 

  • Nakamura T, Mito T, Tanaka Y, Bando T, Ohuchi H, Noji S (2007) Involvement of canonical Wnt/Wingless signaling in the determination of the positional values within the leg segment of the cricket Gryllus bimaculatus. Develop Growth Differ 49:79–88

    Article  CAS  Google Scholar 

  • Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008a) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Mito T, Miyawaki K, Ohuchi H, Noji S (2008b) EGFR signaling is required for re-establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph. Dev Biol 319:46–55

    Article  CAS  PubMed  Google Scholar 

  • Narbonne-Reveau K, Maurange C (2019) Developmental regulation of regenerative potential in Drosophila by ecdysone through a bistable loop of ZBTB transcription factors. PLoS Biol 17:e3000149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needham AE (1946) Peripheral nerve and regeneration in Crustacea. J Exp Biol 22:107–109

    CAS  PubMed  Google Scholar 

  • Needham AE (1965) Regeneration in arthropods and its endocrine control. In: Kiortis V, Trampusch H (eds) Regeneration in Animals. North Holland, Amsterdam, pp 283–323

    Google Scholar 

  • Newmark PA, Alvarado AS (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF (1998) Insect hormones. Princeton University Press, Princeton

    Google Scholar 

  • Nijhout HF (2015) Big or fast: two strategies in the developmental control of body size. BMC Biol 13:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nüesch H (1968) The role of the nervous system in insect morphogenesis and regeneration. Annu Rev Entomol 13:27–44

    Article  Google Scholar 

  • Owlarn S, Bartscherer K (2016) Go ahead, grow a head! A planarian’s guide to anterior regeneration. Regeneration 3:139–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19:491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker NF, Shingleton AW (2011) The coordination of growth among Drosophila organs in response to localized growth-perturbation. Dev Biol 357:318–325

    Article  CAS  PubMed  Google Scholar 

  • Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 1:144–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Pohley H (1965) Regeneration and the moulting cycle in Ephestia kuehniella. In: Kiortis V, Trampusch H (eds) Regeneration in animals. North Holland, Amsterdam, pp 324–330

    Google Scholar 

  • Poodry CA, Woods DF (1990) Control of the developmental timer for Drosophila pupariation. Roux Arch Dev Biol 199:219–227

    Article  PubMed  Google Scholar 

  • Ramet M, Lanot R, Zachary D, Manfruelli P (2002) JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241:145–156

    Article  CAS  PubMed  Google Scholar 

  • Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  CAS  PubMed  Google Scholar 

  • Riddiford LM (1996) Juvenile hormone: the status of its “status quo” action. Arch Insect Biochem Physiol 32:271–286

    Article  CAS  PubMed  Google Scholar 

  • Russell MA (1974) Pattern formation in the imaginal discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Dev Biol 40:24–39

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187

    Article  CAS  PubMed  Google Scholar 

  • Santabárbara-Ruiz P, López-Santillán M, Martínez-Rodríguez I, Binagui-Casas A, Pérez L, Milán M, Corominas M, Serras F (2015) ROS-induced JNK and p38 signaling is required for unpaired cytokine activation during Drosophila regeneration. PLoS Genet 11:e1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubiger G (1971) Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Dev Biol 26:277–295

    Article  CAS  PubMed  Google Scholar 

  • Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M (2012) Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah M, Namigai E, Suzuki Y (2011) The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum. Mech Dev 128:342–400

    Article  CAS  PubMed  Google Scholar 

  • Simkin J, Sammarco MC, Dawson LA, Schanes PP, Yu L, Muneoka K (2015) The mammalian blastema: regeneration at our fingertips. Regeneration 2:93–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson P, Berreur P, Berreur-Bonnenfant J (1980) The initiation of pupariation in Drosophila: dependence on growth of the imaginal discs. J Embryol Exp Morphol 57:155–165

    CAS  PubMed  Google Scholar 

  • Singer M (1952) The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol 27:169–200

    Article  CAS  PubMed  Google Scholar 

  • Skinner DM (1985) Molting and regeneration. In: Bliss DE, Mantel LH (eds) Biology of crustacea, integument, pigments, and hormonal processes. Academic Press, New York, pp 43–146

    Chapter  Google Scholar 

  • Skinner DM, Graham DE (1972) Loss of limbs as a stimulus to ecdysis in Brachyura (True Crabs). Biol Bull 143:222–233

    Article  Google Scholar 

  • Skinner A, Khan SJ, Smith-Bolton RK (2015) Trithorax regulates systemic signaling during Drosophila imaginal disc regeneration. Development 142:3500–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK (2009) Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16:797–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens LJ, Page-McCaw A (2012) A secreted MMP is required for reepithelialization during wound healing. Mol Biol Cell 23:1068–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stieper BC, Kupershtok M, Driscoll MV, Shingleton AW (2008) Imaginal discs regulate developmental timing in Drosophila melanogaster. Dev Biol 321:18–26

    Article  CAS  PubMed  Google Scholar 

  • Stock A, O’Farrell AF (1954) Regeneration and the moulting cycle in Blattella germanica L. II. Simultaneous regeneration of both metathoracic legs. Aust J Biol Sci 7:302–307

    Article  CAS  PubMed  Google Scholar 

  • Stocum DL (2017) Mechanisms of urodele limb regeneration. Regeneration 4:159–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N, Moon RT (2007) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134:479–489

    Article  CAS  PubMed  Google Scholar 

  • Su T, Ludwig MZ, Xu J, Fehon RG (2017) Kibra and Merlin activate the Hippo pathway spatially distinct from and independent of Expanded. Dev Cell 40:478–490 e473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Irvine KD (2011) Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev Biol 350:139–151

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Squires DC, Riddiford LM (2009) Larval leg integrity is maintained by Distal-less and is required for proper timing of metamorphosis in the flour beetle, Tribolium castaneum. Dev Biol 326:60–67

    Article  CAS  PubMed  Google Scholar 

  • Švácha P (1992) What are and what are not imaginal discs: Reevaluation of some basic concepts (insecta, holometabola). Dev Biol 154:101–117

    Article  PubMed  Google Scholar 

  • Swarup S, Verheyen EM (2012) Wnt/Wingless signaling in Drosophila. Cold Spring Harb Perspect Biol 4:a007930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Truman JW (2005) Development of the adult leg epidermis in Manduca sexta: contribution of different larval cell populations. Dev Genes Evol 215:78–89

    Article  PubMed  Google Scholar 

  • Tanaka HV, Ng NC, Yang Yu Z, Casco-Robles MM, Maruo F, Tsonis PA, Chiba C (2016) A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts. Nat Commun 7:11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578

    Article  CAS  PubMed  Google Scholar 

  • Tribolium-Genome-Sequencing-Consortium (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  CAS  Google Scholar 

  • Truby PR (1983) Blastema formation and cell division during cockroach limb regeneration. J Embryol Exp Morphol 75:151–164

    CAS  PubMed  Google Scholar 

  • Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452

    Article  CAS  PubMed  Google Scholar 

  • Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol 47:467–500

    Article  CAS  PubMed  Google Scholar 

  • Turkel N, Sahota VK, Bolden JE, Goulding KR, Doggett K, Willoughby LF, Blanco E, Martin-Blanco E, Corominas M, Ellul J, Aigaki T, Richardson HE, Brumby AM (2013) The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state. PLoS Genet 9:e1003627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uetz GW, McClintock WJ, Miller D, Smith EI, Cook KK (1996) Limb regeneration and subsequent asymmetry in a male secondary sexual character influences sexual selection in wolf spiders. Behav Ecol Sociobiol 38:253–257

    Article  Google Scholar 

  • Villarreal CM, Darakananda K, Wang VR, Jayaprakash PM, Suzuki Y (2015) Hedgehog signaling regulates imaginal cell differentiation in a basally branching holometabolous insect. Dev Biol 404:125–135

    Article  CAS  PubMed  Google Scholar 

  • Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279:86–98

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1957) The strategy of the genes. A discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  • Wang S, Tan XL, Michaud JP, Shi ZK, Zhang F (2015) Sexual selection drives the evolution of limb regeneration in Harmonia axyridis (Coleoptera: Coccinellidae). Bull Entomol Res 105:245–252

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Schubiger G, Harder F, Müller AM (2000) Stem cell plasticity in mammals and transdetermination in Drosophila: common themes? Stem Cells 18(6):409–414

    Google Scholar 

  • Whyte JL, Smith AA, Helms JA (2012) Wnt signaling and injury repair. Cold Spring Harb Perspect Biol 4:a008078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willert K, Nusse R (1998) Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102

    Article  CAS  PubMed  Google Scholar 

  • Woods DF, Bryant PJ (1989) Molecular cloning of the lethal(1)discs large-1 oncogene of Drosophila. Dev Biol 134:222–235

    Article  CAS  PubMed  Google Scholar 

  • Worley MI, Setiawan L, Hariharan IK (2012) Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 46:289–310

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Liu Y, Zheng Y, Dong J, Pan D (2008) The TEAD/TEF family protein scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14:388–398

    Article  CAS  PubMed  Google Scholar 

  • Yang EV, Bryant SV (1994) Developmental regulation of a matrix metalloproteinase during regeneration of axolotl appendages. Dev Biol 166:696–703

    Article  CAS  PubMed  Google Scholar 

  • Yang EV, Gardiner DM, Carlson MRJ, Nugas CA, Bryant SV (1999) Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev Dyn 216:2–9

    Article  CAS  PubMed  Google Scholar 

  • Yu XL, Chang ES, Mykles DL (2002) Characterization of limb autotomy factor-proecdysis (LAF(pro)), isolated from limb regenerates, that suspends molting in the land crab Gecarcinus lateralis. Biol Bull 202:204–212

    Article  CAS  PubMed  Google Scholar 

  • Zeidler MP, Bausek N (2013) The Drosophila JAK-STAT pathway. JAKSTAT 2:e25353

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J (2008) The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Riddiford LM (2002) Broad specifies pupal development and mediates the ‘status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129:2259–2269

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewer, members of the Suzuki lab, and Heidi Park for their constructive feedback on this review. This work was supported by Wellesley College and by the National Science Foundation grants IOS-1027453 and IOS-1354608 to YS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suzuki, Y., Chou, J., Garvey, S.L., Wang, V.R., Yanes, K.O. (2019). Evolution and Regulation of Limb Regeneration in Arthropods. In: Tworzydlo, W., Bilinski, S. (eds) Evo-Devo: Non-model Species in Cell and Developmental Biology. Results and Problems in Cell Differentiation, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-23459-1_17

Download citation

Publish with us

Policies and ethics