Skip to main content

Gated Convolutional Neural Networks for Domain Adaptation

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11608))

Abstract

Domain Adaptation explores the idea of how to maximize performance on a target domain, distinct from source domain, upon which the model was trained. This idea has been explored for the task of sentiment analysis extensively. The training of reviews pertaining to one domain and evaluation on another domain is widely studied for modeling a domain independent algorithm. This further helps in understanding corelation of information between domains. In this paper, we show that Gated Convolutional Neural Networks (GCN) perform effectively at learning sentiment analysis in a manner where domain dependant knowledge is filtered out using its gates. We perform our experiments on multiple gate architectures: Gated Tanh ReLU Unit (GTRU), Gated Tanh Unit (GTU) and Gated Linear Unit (GLU). Extensive experimentation on two standard datasets relevant to the task, reveal that training with Gated Convolutional Neural Networks give significantly better performance on target domains than regular convolution and recurrent based architectures. While complex architectures like attention, filter domain specific knowledge as well, their complexity order is remarkably high as compared to gated architectures. GCNs rely on convolution hence gaining an upper hand through parallelization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://nlp.stanford.edu/data/glove.840B.300d.zip.

  2. 2.

    https://github.com/ultimate010/crnn.

References

  1. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)

    Google Scholar 

  2. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)

    Article  Google Scholar 

  3. McCallum, A., Nigam, K., et al.: A comparison of event models for Naive Bayes text classification. In: AAAI-98 Workshop on Learning for Text Categorization, vol. 752, pp. 41–48. Citeseer (1998)

    Google Scholar 

  4. Joachims, T.: Text categorization with Support Vector Machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  5. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers, vol. 2, pp. 90–94. Association for Computational Linguistics (2012)

    Google Scholar 

  6. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  8. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 129–136 (2011)

    Google Scholar 

  9. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  10. Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  11. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 120–128. Association for Computational Linguistics (2006)

    Google Scholar 

  14. Pan, S.J., Ni, X., Sun, J.-T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: Proceedings of the 19th International Conference on World Wide Web, pp. 751–760. ACM (2010)

    Google Scholar 

  15. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 513–520 (2011)

    Google Scholar 

  16. Li, Z., Zhang, Y., Wei, Y., Wu, Y., Yang, Q.: End-to-end adversarial memory network for cross-domain sentiment classification. In: IJCAI, pp. 2237–2243 (2017)

    Google Scholar 

  17. Liu, Q., Zhang, Y., Liu, J.: Learning domain representation for multi-domain sentiment classification. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), vol. 1, pp. 541–550 (2018)

    Google Scholar 

  18. Li, Z., Wei, Y., Zhang, Y., Yang, Q.: Hierarchical attention transfer network for cross-domain sentiment classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  19. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 933–941. JMLR.org (2017)

    Google Scholar 

  20. Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 440–447 (2007)

    Google Scholar 

  21. Yu, J., Jiang, J.: Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 236–246 (2016)

    Google Scholar 

  22. Chen, P., Guo, W., Chen, Z., Sun, J., You, L.: Gated convolutional neural network for sentence matching. In: Interspeech (2018)

    Google Scholar 

  23. Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional networks. arXiv preprint arXiv:1805.07043 (2018)

  24. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  25. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: proceedings of the 25th International Conference on World Wide Web, pp. 507–517. International World Wide Web Conferences Steering Committee (2016)

    Google Scholar 

  26. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  27. Wang, X., Jiang, W., Luo, Z.: Combination of convolutional and recurrent neural network for sentiment analysis of short texts. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2428–2437 (2016)

    Google Scholar 

  28. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  29. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijjini Anvesh Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madasu, A., Rao, V.A. (2019). Gated Convolutional Neural Networks for Domain Adaptation. In: Métais, E., Meziane, F., Vadera, S., Sugumaran, V., Saraee, M. (eds) Natural Language Processing and Information Systems. NLDB 2019. Lecture Notes in Computer Science(), vol 11608. Springer, Cham. https://doi.org/10.1007/978-3-030-23281-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23281-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23280-1

  • Online ISBN: 978-3-030-23281-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics