Skip to main content

Moonlighting Functions of Heat Shock Protein 90

  • Chapter
  • First Online:
Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

Hsp90 is a highly expressed and ubiquitous chaperone in eukaryotes and bacteria. It works with hundreds of client proteins and is regulated by dozens of co-chaperones. Its functions in folding, stabilizing, assembling and disassembling proteins and complexes that are involved in many key processes in the cell, including antigen cross-presentation, stabilization of the cytoskeleton, signaling pathways, stabilization of steroid receptors and other transcription factors, assembly and disassembly of transcription machinery, DNA repair, and the cell cycle. This ubiquitous and versatile intracellular protein is found to have even more functions outside the cell. In this review we discuss the idea that Hsp90 is a moonlighting protein with roles as a secreted cytokine and as a cell surface apoptotic signal and receptor for bacterial cells and lipopolysaccharide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A2MR:

Alpha 2 macroglobulin receptor

BMDC:

Bone marrow derived dendritic cells

CD11:

Integrin subunit

CD18:

Integrin subunit

CXCR4:

Chemokine receptor 4

ER:

Endoplasmic reticulum

GDF5:

Growth differentiation factor 5

HEp-2:

Human epithelial type 2

Hsc70:

Heat shock cognate 71 kDa protein

hsp75:

Heat shock protein 75 kDa mitochondrial

Hsp90:

Heat shock protein Hsp 90

HtpG:

High temperature protein G/C62.5

LBP:

Lipopolysaccharide-binding protein

LOX-1:

Lectin-like oxidized LDL receptor-1

LPS:

Lipopolysaccharide

LRP-1:

LDL receptor-related protein 1/ CD91

MoonProt:

Moonlighting proteins database

PTMs:

Post-translational modifications

TLR4:

Toll-like receptor 4

TRAP1:

Heat shock protein 75 kDa mitochondrial

References

  • Amblee V, Jeffery CJ (2015) Physical features of intracellular proteins that moonlight on the cell surface. PLoS One 10:e0130575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee S, Nandyala AK, Raviprasad P, Ahmed N, Hasnain SE (2007) Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol 189:4046–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardwell JC, Craig EA (1987) Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proc Natl Acad Sci USA 84:5177–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    Article  CAS  PubMed  Google Scholar 

  • Cecchini P, Tavano R, de Laureto PP, Franzoso S, Mazzon C, Montanari P, Papini E (2011) The soluble recombinant Neisseria meningitidis adhesin NadAΔ351–405 stimulates human monocytes by binding to extracellular Hsp90. PLoS One 6:e25089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaput M, Claes V, Portetelle D, Cludts I, Cravador A, Burny A, Gras H, Tartar A (1988) The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332:454–455

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Zabad S, Liu H, Wang W, Jeffery C (2017) MoonProt 2.0: an expansion and update of the moonlighting proteins database. Nucleic Acids Res 46:D640–D644

    Article  PubMed Central  CAS  Google Scholar 

  • Cheng CF, Fan J, Fedesco M, Guan S, Li Y, Bandyopadhyay B, Bright AM, Yerushalmi D, Liang M, Chen M, Han YP, Woodley DT, Li W (2008) Transforming growth factor α (TGFα)-stimulated secretion of HSP90α: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFβ-rich environment during wound healing. Mol Cell Biol 28:3344–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CF, Sahu D, Tsen F, Zhao Z, Fan J, Kim R, Wang X, O’Brien K, Li Y, Kuang Y, Chen M, Woodley DT, Li W (2011) A fragment of secreted Hsp90α carries properties that enable it to accelerate effectively both acute and diabetic wound healing in mice. J Clin Invest 121:4348–4361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638

    Article  CAS  PubMed  Google Scholar 

  • Csermely P, Kahn CR (1991) The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity. J Biol Chem 266:4943–4950

    CAS  PubMed  Google Scholar 

  • Faik P, Walker JI, Redmill AA, Morgan MJ (1988) Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature 332:455–457

    Article  PubMed  Google Scholar 

  • Garduño RA, Garduño E, Hoffman PS (1998) Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66:4602–4610

    PubMed  PubMed Central  Google Scholar 

  • Gurney ME, Heinrich SP, Lee MR, Yin HS (1986) Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 234:566–574

    Article  CAS  PubMed  Google Scholar 

  • Hance M, Nolan K, Isaacs J (2014) The double-edged sword: conserved functions of extracellular hsp90 in wound healing and cancer. Cancers 6:1065–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson B, Pockley AG (eds) (2005) Molecular chaperones and cell signaling. Cambridge University Press, Cambridge

    Google Scholar 

  • Henderson B, Pockley AG (2010) Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 88:445–462

    Article  CAS  PubMed  Google Scholar 

  • Ishikura S, Usami N, Araki M, Hara A (2005) Structural and functional characterization of rabbit and human L-gulonate 3-dehydrogenase. J Biochem 137:303–314

    Article  CAS  PubMed  Google Scholar 

  • Jayaprakash P, Dong H, Zou M, Bhatia A, O’Brien K, Chen M, Woodley DT, Li W (2015) HSP90α and HSP90β co-operate a stress-response mechanism to cope with hypoxia and nutrient paucity during wound healing. J Cell Sci 128:1475–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem 24:8–11

    Article  CAS  Google Scholar 

  • Jeffery CJ (2004) Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins. Curr Opin Struct Biol 14:663–668

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ (2009) Moonlighting proteins—an update. Mol BioSyst 5:345–350

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ (2016) Protein species and moonlighting proteins: very small changes in a protein’s covalent structure can change its biochemical function. J Proteome 134:19–24

    Article  CAS  Google Scholar 

  • Jeffery C (2018) Intracellular proteins moonlighting as bacterial adhesion factors. AIMS Microbiol 4:362–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Song YC, Emili A, Sherman PM, Chan VL (2003) JlpA of campylobacter jejuni interacts with surface-exposed heat shock protein 90α and triggers signalling pathways leading to the activation of NF-κB and p38 MAP kinase in epithelial cells. Cell Microbiol 5:165–174

    Article  CAS  PubMed  Google Scholar 

  • Kainulainen V, Korhonen T (2014) Dancing to another tune—adhesive moonlighting proteins in bacteria. Biology 3:178–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennaway CK, Benesch JL, Gohlke U, Wang L, Robinson CV, Orlova EV, Saibil HR, Keep NH (2005) Dodecameric structure of the small heat shock protein Acr1 from Mycobacterium tuberculosis. J Biol Chem 280:33419–33425

    Article  CAS  PubMed  Google Scholar 

  • Kennedy MC, Mende-Mueller L, Blondin GA, Beinert H (1992) Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci USA 89:11730–11734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KP, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT, Bhunia AK (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256:324–332

    Article  CAS  PubMed  Google Scholar 

  • Langer T, Schlatter H, Fasold H (2002) Evidence that the novobiocin-sensitive ATP-binding site of the heat shock protein 90 (hsp90) is necessary for its autophosphorylation. Cell Biol Int 26:653–657

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li Y, Guan S, Fan J, Cheng CF, Bright AM, Chinn C, Chen M, Woodley DT (2007) Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J 26:1221–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani M, Chen C, Amblee V, Liu H, Mathur T, Zwicke G, Zabad S, Patel B, Thakkar J, Jeffery CJ (2014) MoonProt: a database for proteins that are known to moonlight. Nucleic Acids Res 43:D277–D282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655

    Article  CAS  PubMed  Google Scholar 

  • Nadeau K, Das A, Walsh CT (1993) Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 268:1479–1487

    CAS  PubMed  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park M, Kang CY, Krishna P (1998) Brassica napus hsp90 can autophosphorylate and phosphorylate other protein substrates. Mol Cell Biochem 185:33–38

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH (2016) The HSP90 molecular chaperone—an enigmatic ATPase. Biopolymers 105:594–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philpott CC, Klausner RD, Rouault TA (1994) The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci USA 91:7321–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pockley AG, Henderson B (2017) Extracellular cell stress (heat shock) proteins—immune responses and disease: an overview. Philos Trans R Soc B Biol Sci 373:20160522

    Article  CAS  Google Scholar 

  • Rao PV, Krishna CM, Zigler JS (1992) Identification and characterization of the enzymatic activity of zeta-crystallin from Guinea pig lens. A novel NADPH: quinone oxidoreductase. J Biol Chem 267:96–102

    CAS  PubMed  Google Scholar 

  • Rebbe NF, Ware J, Bertina RM, Modrich P, Stafford DW (1987) Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family. Gene 53:235–245

    Article  CAS  PubMed  Google Scholar 

  • Ruiz L, Ruas-Madiedo P, Gueimonde M, Clara GDLR, Margolles A, Sánchez B (2011) How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr 6:307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18:6718–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    Article  CAS  PubMed  Google Scholar 

  • Song X, Luo Y (2010) The regulatory mechanism of Hsp90α secretion from endothelial cells and its role in angiogenesis during wound healing. Biochem Biophys Res Commun 398:111–117

    Article  CAS  PubMed  Google Scholar 

  • Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB (1995) Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 270:3574–3581

    Article  CAS  PubMed  Google Scholar 

  • Thein M, Sauer G, Paramasivam N, Grin I, Linke D (2010) Efficient subfractionation of gram-negative bacteria for proteomics studies. J Proteome Res 9:6135–6147

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou K, Triantafilou M, Dedrick RL (2001a) A CD14-independent LPS receptor cluster. Nat Immunol 2:338 345

    Article  CAS  Google Scholar 

  • Triantafilou K, Triantafilou M, Ladha S, Mackie A, Dedrick RL, Fernandez N, Cherry R (2001b) Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD14 to hsp70 and hsp90 on the cell membrane. J Cell Sci 114:2535–2545

    CAS  PubMed  Google Scholar 

  • Tzeng YL, Kahler CM, Zhang X, Stephens DS (2008) MisR/MisS two-component regulon in Neisseria meningitidis. Infect Immun 76:704–716

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Goyal S, Jamal S, Singh A, Grover A (2016) Hsp90: friends, clients and natural foes. Biochimie 127:227–240

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Jeffery CJ (2016) An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. Mol BioSyst 12:1420–1431

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Takehana K, Date M, Shinozaki T, Raz A (1996) Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res 56:2960–2963

    CAS  PubMed  Google Scholar 

  • Wistow GJ, Piatigorsky J (1990) Gene conversion and splice-site slippage in the argininosuccinate lyases/δ-crystallins of the duck lens: members of an enzyme superfamily. Gene 96:263–270

    Article  CAS  PubMed  Google Scholar 

  • Woodley DT, Fan J, Cheng CF, Li Y, Chen M, Bu G, Li W (2009) Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90α autocrine signaling to promote keratinocyte migration. J Cell Sci 122:1495–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Seiter K, Feldman E, Ahmed T, Chiao JW (1996) The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood 87:4502–4506

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Wong SL (1995) Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J Bacteriol 177:6462–6468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Fang X, Zhang D, Wu W, Shao M, Wang L, Gu J (2016) Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis 21:96–109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research on this project in the Jeffery lab is supported by an award from the University of Illinois Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constance Jeffery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, C., Jeffery, C. (2019). Moonlighting Functions of Heat Shock Protein 90. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_13

Download citation

Publish with us

Policies and ethics