Skip to main content

Determining Vibroreceptor Sensitivity in Insects: The Influence of Experimental Parameters and Recording Techniques

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 6))

Abstract

Vibration detection in insects can be studied behaviourally and neurophysiologically. Specialised vibration receptor organs are often located in the legs. Determining the vibratory threshold is an important parameter to characterise an organs’ physiological function. We argue that an experimental setup should consider the sensory organs’ functional morphology to measure its maximal vibratory sensitivity. Experimental data show that vibratory thresholds determined by electrophysiological recordings can be influenced by several experimental parameters like leg position, direction of stimulation and attachment of appendages to the stimulator, which affect the mechanical energy reaching the receptor systems. The recording techniques with their different resolutions and the stimulus calibration may also influence the recorded sensitivity. We discuss physiological case studies, mainly from orthopteroid insects, to emphasise the importance of these experimental parameters on absolute sensitivity. We suggest that the experimental parameters with a known influence should be stated in electrophysiological investigations for comparisons of physiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the fiddler crab, Uca pugilator (Brachyura, Ocypodidae) as measured by laser Doppler vibrometry. J Comp Physiol 150:483–491

    Google Scholar 

  • Autrum H (1941) Über Gehör und Erschütterungssinn der Locustiden. Z Vergl Physiol 28:580–637

    Google Scholar 

  • Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn der Insekten. Z vergl Physiol 31:77–88

    CAS  Google Scholar 

  • Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 228–278

    Google Scholar 

  • Barth FG (2002a) A spider’s world. Senses and behavior. Springer, Berlin

    Google Scholar 

  • Barth FG (2002b) Spider mechanoreceptors. Curr Opin Neurobiol 14:415–422

    Google Scholar 

  • Bässler U (1977) Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint. J Comp Physiol 121:99–113

    Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Berlin

    Google Scholar 

  • Bässler U, Sauer AE, Büsches A (2003) Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system. J Neurobiol 56:25–138

    Google Scholar 

  • Büschges A (1994) The physiology of sensory cells in the ventral scoloparium of the stick insect femoral chordotonal organ. J Exp Biol 189:285–292

    PubMed  Google Scholar 

  • Čokl A (1983) Functional properties of vibroreceptors in the legs of Nezara viridula (L.) (Heteroptera, Pentatomidae). J Comp Physiol A 150:261–269

    Google Scholar 

  • Čokl A, Virant-Doberlet M (1997) Tuning of tibial organ receptor cells in Periplaneta americana L. J Exp Zool 278:395–404

    Google Scholar 

  • Čokl A, Virant-Doberlet M (2009) Vibrational communication. In: Resh VH, Carde RT (eds) Encyclopedia of insects, 2nd edn. Academic Press, Amsterdam, pp 1034–1038

    Google Scholar 

  • Čokl A, Otto C, Kalmring K (1985) The processing of directional vibratory signals in the ventral nerve cord of Locusta migratoria. J Comp Physiol A 156:45–52

    Google Scholar 

  • Čokl A, Kalmring K, Rössler W (1995) Physiology of atympanate tibial organs in forelegs and midlegs of the cave-living Ensifera, Troglophilus neglectus (Rhaphidophoridae, Gryllacridoidea). J Exp Zool 273:376–388

    Google Scholar 

  • Čokl A, Virant-Doberlet M, Zorović M (2006) Sense organs involved in vibratory communication of bugs. In: Drosopoulos S, Claridge MF (eds) Insect Sounds and communication. Physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, FL, pp 71–80

    Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Google Scholar 

  • Cocroft RB, Tieu T, Hoy RR, Miles R (2000) Mechanical directionality in the response to substrate vibration in a treehopper. J Comp Physiol A 186:695–705

    CAS  PubMed  Google Scholar 

  • Cocroft RB, Gogala M, PSM H, Wessel A (eds) (2014a) Studying vibrational communication. Springer, Berlin

    Google Scholar 

  • Cocroft RB, Hamel J, Su Q, Gibson J (2014b) Vibrational playback experiments: challenges and solutions. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, New York, pp 249–274

    Google Scholar 

  • Cremer L, Heckl M, Pettersson BAT (2005a) Structure-borne sound. Springer, Berlin

    Google Scholar 

  • Cremer L, Heckl M, Petersson BAT (2005) Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer, Berlin

    Google Scholar 

  • Dambach M (1972a) Der Vibrationssinn der Grillen. I. Schwellenmessungen an Beinen frei beweglicher Tiere. J Comp Physiol 79:281–304

    Google Scholar 

  • Dambach M (1972b) Der Vibrationssinn der Grillen. II. Antworten von Neuronen im Bauchmark. J Comp Physiol 79:305–324

    Google Scholar 

  • Dambach M (1989) Vibrational responses. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca, pp 179–197

    Google Scholar 

  • Dambach M, Huber F (1974) Perception of substrate-vibration in crickets. In: Abhandlungen der Rheinisch-Westfälische Akademie der Wissenschaften: Symposium Mechanoreception. Westdeutscher Verlag, Opladen, pp 263–280

    Google Scholar 

  • Debaisieux P (1938) Organes scolopidiaux des pattes d’insectes II. Cellule 47:77–202

    Google Scholar 

  • Devetak D, Amon T (1997) Substrate vibration sensitivity of the leg scolopidial organs in the green lacewing, Chrysoperla carnea. J Insect Physiol 43:433–437

    CAS  Google Scholar 

  • Devetak D, Pabst MA, Delakorda SL (2004) Leg chordotonal organs and campaniform sensilla in Chrysoperla Steinmann 1964 (Neuroptera): structure and function. Denisia 13:163–171

    Google Scholar 

  • Dierkes S, Barth FG (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J Comp Physiol A 176:31–44

    Google Scholar 

  • Drosopoulos S, Claridge MF (eds) (2006) Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, FL

    Google Scholar 

  • Eberhard M, Lang D, Metscher B, Pass G, Picker M, Wolf H (2010) Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication. Arthropod Struct Dev 39:230–241

    CAS  PubMed  Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27:1–228

    Google Scholar 

  • Field LH, Pflüger H-J (1989) The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol A 93:729–743

    Google Scholar 

  • Finck A (1981) The lyriform organ of the orb-weaving spider Araneous sericatus: vibrational sensitivity is altered by bending the leg. J Acoust Soc Am 70:231–233

    Google Scholar 

  • Godden DH (1972) The motor innervation of the leg musculature and motor output during thanatosis in the stick insect, Carausius morosus. Br J Comp Physiol 80:20–225

    Google Scholar 

  • Gogala M (1985) Vibrational communication in insects (biophysical and behavioural aspects). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey Verlag, Berlin, pp 117–126

    Google Scholar 

  • Greenfield MD (2002) Signalers and receivers. Mechanisms and evolution of arthropod communication. Oxford University Press, Oxford

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R187–R191

    CAS  Google Scholar 

  • Howse P (1964) An investigation into the mode of action of the subgenual organ in the termite, Zootermopsis angusticollis Emerson, and the cockroach, Periplaneta americana L. J Insect Physiol 10:409–424

    Google Scholar 

  • Hummel J, Schöneich S, Kössl M, Scherberich J, Hedwig B, Prinz S, Nowotny M (2016) Gating of acoustic transducer channels is shaped by biomechanical filter processes. J Neurosci 36:2377–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalmring K (1985) Vibrational communication in insects (reception and integration of vibratory information). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey Verlag, Berlin, pp 127–134

    Google Scholar 

  • Kalmring K, Jatho M (1994) The effect of blocking inputs of the acoustic trachea on the frequency tuning of primary auditory receptors in two species of tettigoniids. J Exp Zool 270:360–371

    Google Scholar 

  • Kalmring K, Kühne R (1980) The coding of airborne-sound and vibration signals in bimodal ventral-cord neurons of the grasshopper Tettigonia cantans. J Comp Physiol A 139:267–275

    Google Scholar 

  • Kalmring K, Lewis B, Eichendorf A (1978) The physiological characteristics of the primary sensory neurons of the complex tibial organ of Decticus verrucivorus L. (Orthoptera, Tettigonioidae). J Comp Physiol 127:109–121

    Google Scholar 

  • Kalmring K, Rössler W, Unrast C (1994) Complex tibial organs in the fore-, mid- and hindlegs of the bushcricket Gampsocleis gratiosa (Tettigoniidae): Comparison of physiology of the organs. J Exp Zool 270:155–161

    Google Scholar 

  • Kalmring K, Hoffmann E, Jatho M, Sickmann T, Grossbach M (1996) The auditory-vibratory sensory system of the bushcricket Polysarcus denticauda (Phaneropterinae, Tettigoniidae). II. Physiology of receptor cells. J Exp Zool 276:315–329

    Google Scholar 

  • Kamikouchi A, Ishikawa Y (2016) Hearing in Drosophila. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect hearing. Springer, Cham, pp 239–262

    Google Scholar 

  • Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531

    CAS  PubMed  Google Scholar 

  • Kilpinen O, Storm J (1997) Biophysics of the subgenual organ of the honeybee, Apis mellifera. J Comp Physiol A 181:309–318

    Google Scholar 

  • Kühne R (1982a) Neurophysiology of the vibration sense in locusts and bushcrickets: Response characteristics of single receptor units. J Insect Physiol 28:155–163

    Google Scholar 

  • Kühne R (1982b) Neurophysiology of the vibration sense in locusts and bushcrickets: the responses of ventral-cord neurons. J Insect Physiol 28:615–623

    Google Scholar 

  • Kühne R, Silver S, Lewis B (1984) Processing of vibratory and acoustic signals by ventral cord neurons in the crickets Gryllus campestris. J Insect Physiol 30:575–585

    Google Scholar 

  • Lakes R, Pollack GS (1990) The development of the sensory organs of the legs in the blowfly, Phormia regina. Cell Tissue Res 259:93–104

    CAS  PubMed  Google Scholar 

  • Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, New York, pp 277–302

    Google Scholar 

  • Lakes-Harlan R, Bailey WJ, Schikorski T (1991) The auditory system of an atympanate bushcricket Phasmodes ranatriformes (Westwood) (Tettigoniidae: Orthoptera). J Exp Biol 158:307–324

    Google Scholar 

  • Lin Y, Rössler W, Kalmring K (1994) Complex tibial organs in fore-, mid-, and hindlegs of the bushcricket Gampsocleis gratiosa (Tettigoniidae): comparison of morphology of the organs. J Morphol 221:191–198

    PubMed  Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 332–353

    Google Scholar 

  • Mason AC, Pollack GS (2016) Introduction to insect acoustics. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect Hearing. Springer International Publishing, Cham, pp 1–15

    Google Scholar 

  • Michel K, Amon T, Čokl A (1983) The morphology of the leg scolopidial organs in Nezara viridula (L.) (Heteroptera, Pentatomidae). Rev Can Biol Exp 42:139–150

    Google Scholar 

  • Michelsen A (2014) Physical aspects of vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 199–213

    Google Scholar 

  • Mücke A (1991) Innervation pattern and sensory supply of the midleg of Schistocerca gregaria (Insecta, Orthopteroidea). Zoomorphology 110:175–187

    Google Scholar 

  • Perez Goodwyn P, Katsumata-Wada A, Okada K (2009) Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae). J Insect Physiol 55:855–861

    CAS  PubMed  Google Scholar 

  • Pflüger H-J, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropiles in locust thoracic ganglia. Philos Trans R Soc Lond B 321:1–26

    Google Scholar 

  • Robert D, Göpfert MC (2002) The mechanical basis of Drosophila audition. J Exp Biol 205:1199–1208

    PubMed  Google Scholar 

  • Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84

    Google Scholar 

  • Römer H, Tautz J (1992) Invertebrate auditory receptors. In: Ito F (ed) Comparative aspects of mechanoreceptor systems. Springer, Berlin, pp 185–212

    Google Scholar 

  • Rössler W, Jatho M, Kalmring K (2006) The auditory-vibratory sensory system in bushcrickets. In: Drosopoulos S, Claridge MF (eds) Insect sound and communication. CRC Press, Boca Raton, FL, pp 35–69

    Google Scholar 

  • Sandeman DC, Tautz J, Lindauer M (1996) Transmission of vibration across honeycombs and its detection by bee leg receptors. J Exp Biol 199:2585–2594

    CAS  PubMed  Google Scholar 

  • Schmitz J, Dean J, Kittmann R (1991) Central projections of leg sense organs in Carausius morosus (Insecta, Phasmida). Zoomorphology 111:19–33

    Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesorgane von Periplaneta americana: Histologie und Vibrationsschwellen. Z Vergl Physiol 71:14–48

    Google Scholar 

  • Shaw SR (1994) Re-evaluation of the absolute threshold and response mode of the most sensitive known “vibration” detector, the cockroach’s subgenual organ: a cochlea-like displacement threshold and a direct response to sound. J Neurobiol 25:1167–1185

    CAS  PubMed  Google Scholar 

  • Sickmann T (1997) Vergleichende funktionelle und anatomische Untersuchungen zum Aufbau der Hör- und Vibrationsbahn im thorakalen Bauchmark von Laubheuschrecken. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Sippel M, Otto C, Kalmring K (1985) Significant parameters in conspecific signals for processing in vibratory-auditory neurons of bushcrickets and locusts. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey Verlag, Berlin, pp 73–80

    Google Scholar 

  • Stein W, Sauer A (1999) Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect. J Comp Physiol A 184:253–263

    Google Scholar 

  • Strauß J (2017) The scolopidial accessory organs and Nebenorgans in orthopteroid insects: comparative neuroanatomy, mechanosensory function, and evolutionary origin. Arthropod Struct Dev 46:765–776

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2008a) Neuroanatomy and physiology of the complex tibial organ of an atympanate ensiferan, Ametrus tibialis (Brunner von Wattenwyl, 1888) (Gryllacrididae, Orthoptera) and evolutionary implications. Brain Behav Evol 71:167–180

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2008b) Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae). J Comp Neurol 511:81–91

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2010) Neuroanatomy of the complex tibial organ in the splay-footed cricket Comicus calcaris IRISH 1986 (Orthoptera: Ensifera: Schizodactylidae). J Comp Neurol 518:4567–4580

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2013) Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J Comp Neurol 521:3791–3803

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2017) Vibrational sensitivity of the subgenual organ complex in female Sipyloidea sipylus stick insects in different experimental paradigms of stimulus direction, leg attachment, and ablation of a connective tibial sense organ. Comp Physiol Biochem A 203:100–108

    Google Scholar 

  • Strauß J, Stritih N (2016) The accessory organ, a scolopidial sensory organ, in the cave cricket Troglophilus neglectus (Orthoptera: Ensifera: Rhaphidophoridae). Acta Zool (Stockholm) 97:187–195

    Google Scholar 

  • Strauß J, Riesterer A, Lakes-Harlan R (2016) How many mechanosensory organs in the bushcricket leg? Neuroanatomy of the scolopidial accessory organ in Tettigoniidae (Insecta: Orthoptera). Arthropod Struct Dev 45:31–41

    PubMed  Google Scholar 

  • Strauß J, Lomas K, Field LH (2017) The complex tibial organ of the New Zealand ground weta: sensory adaptations for vibrational signal detection. Sci Rep-UK 7:2031

    Google Scholar 

  • Stritih N (2009) Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, Rhaphidophoridae). J Comp Neurol 516:519–532

    PubMed  Google Scholar 

  • Stritih N, Čokl A (2014) The role of frequency in vibrational communication of Orthoptera. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 375–393

    Google Scholar 

  • Stritih Peljhan N, Strauß J (2018) The mechanical leg response to vibration stimuli in cave crickets and implications for vibrosensory organ functions. J Comp Physiol A 205:687–702

    Google Scholar 

  • Takanashi T, Fukaya M, Nakamuta K, Skals N, Nishino H (2016) Substrate vibrations mediate behavioral responses via femoral chordotonal organs in a cerambycid beetle. Zool Lett 2:18

    Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Google Scholar 

  • Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. Physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, FL, pp 81–97

    Google Scholar 

  • Wiese K (1972) Das mechanorezeptive Beuteortungssystem von Notonecta. I. Die Funktion des tarsalen Scolopidialorgans. J Comp Physiol 78:83–102

    Google Scholar 

  • Wirkner CS, Tögel M, Pass G (2013) The arthropod circulatory system. In: Minelli A, Boxshall GA, Fusco G (eds) Arthropod biology and evolution – molecules, development, Morphology. Springer, Heidelberg, pp 343–391

    Google Scholar 

  • Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63:315–337

    PubMed  Google Scholar 

  • Yack JE (2016) Vibrational signaling. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect hearing. Springer International Publishing, Cham, pp 99–123

    Google Scholar 

  • Young D (1970) The structure and function of a connective chordotonal organ in the cockroach leg. Philos Trans R Soc Lond B 256:401–426

    Google Scholar 

  • Zorović M, Presern J, Čokl A (2008) Morphology and physiology of vibratory interneurons in the thoracic ganglia of the southern green stinkbug Nezara viridula (L.). J Comp Neurol 508:365–381

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Strauß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strauß, J., Stritih-Peljhan, N., Lakes-Harlan, R. (2019). Determining Vibroreceptor Sensitivity in Insects: The Influence of Experimental Parameters and Recording Techniques. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_11

Download citation

Publish with us

Policies and ethics