Skip to main content

An In Vitro Model of Triple-Negative Breast Cancer

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1164))

Abstract

We have characterized two highly tumorigenic and metastatic basal B TNBC cell lines, XtMCF and LmMCF, with the additional values of having the normal and early-stage counterparts of them. This model allows the study of the evolution of TNBC, and investigates molecular pathways at different stages of transformation and progression in a relatively constant genetic background. This constitutes an ideal model for developing targeted therapy in two important fields in cancer biology which are the epithelial mesenchymal transition (EMT) and cancer stem cells (CSC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russo, J., Lareef, M. H., Balogh, G., Guo, S., & Russo, I. H. (2003). Estrogen and its metabolites are carcinogenic in human breast epithelial cells. The Journal of Steroid Biochemistry and Molecular Biology, 87, 1–25.

    Article  CAS  PubMed  Google Scholar 

  2. Russo, J., & Russo, I. H. (2004). Genotoxicity of steroidal estrogens. Trends in Endocrinology and Metabolism, 15, 211–214.

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez, S. V., Russo, I. H., Lareef, M. H., Balsara, B., & Russo, J. (2005). Comparative genomic hybridization of human breast epithelial cells transformed by estrogen and its metabolites. International Journal of Oncology, 26(3), 691–695.

    CAS  PubMed  Google Scholar 

  4. Chen, J.-Q., Yager, J. D., & Russo, J. (2005). Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications: Review. Biochimica et Biophysica Acta, 1746, 1–17.

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez, S. V., Lareef, M. H., Russo, I. H., Balsara, B. R., Testa, J. R., & Russo, J. (2006). Estrogen and its metabolites 4-Hydroxy-estradiol induce mutations in TP53 and LOH in chromosome 13q12.3 near BRCA2 in human breast epithelial cells. International Journal of Cancer, 118(8), 1862–1868.

    Article  CAS  PubMed  Google Scholar 

  6. Cavalieri, E., Chakravarti, D., Guttenplan, J., Hart, E., Ingle, J., Jankowiak, R., Muti, P., Rogan, E., Russo, J., Santen, R., & Sutter, T. (2006). Catechol estrogen quinones as initiators of breast and other human cancers. Implications for biomarkers of susceptibility and cancer prevention. Review. Biochimica et Biophysica Acta, 1766, 63–78.

    CAS  PubMed  Google Scholar 

  7. Russo, J., Fernandez, S. V., Russo, P. A., Fernbaugh, R., Sheriff, F. S., Lareef, H. M., Garber, J., & Russo, I. H. (2006). 17 beta estradiol induces transformation and tumorigenesis in human breast epithelial cells. The FASEB Journal, 20, 1622–1634.

    Article  CAS  PubMed  Google Scholar 

  8. Russo, J., & Russo, I. H. (2006). The role of estrogen in the initiation of breast cancer. The Journal of Steroid Biochemistry and Molecular Biology, 102, 89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mello, M. L., Vidal, B. C., Lareef, M. H., Russo, I. H., & Russo, J. (2007). DNA content and estradiolbchromatin texture of human breast epithelial cells treated with 17- and the estrogen antagonist ICI 182,780 as assessed by image analysis. Mutation Research, 617, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tiezzi, D. G., Fernandez, S. V., & Russo, J. (2007). Epithelial to mesenchymal transition during breast cancer progression. International Journal of Oncology, 31, 823–827.

    CAS  PubMed  Google Scholar 

  11. Huang, Y., Fernandez, S., Goodwin, S., Russo, P. A., Russo, I. H., Sutter, T., & Russo, J. (2007). Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17-beta-estradiol. Cancer Research, 67, 11147–11157.

    Article  CAS  PubMed  Google Scholar 

  12. Harvey, J. A., Santen, R. J., Petroni, G. R., Bovbjerg, V., Smolkin, M. A., Sheriff, F., & Russo, J. (2008). Histology changes in the breast with menopausal hormone therapy use: Correlation with breast density, ER, PgR, and proliferation indices. Menopause, 15(1), 67–73.

    PubMed  PubMed Central  Google Scholar 

  13. Russo, J., & Russo, I. H. (2007). Estradiol. In M. Schwab (Ed.), Encyclopedia of Cancer (2nd ed.). Heidelberg: Springer.

    Google Scholar 

  14. Chen, J.-Q., Russo, P. A., Cooke, C., Russo, I. H., & Russo, J. (2007). ERβ shifts from the mitochondria to the nucleus during 17β estradiol induced neoplastic transformation of human breast epithelial cells and is involved in E2 induced synthesis of mitochondrial chain proteins. Biochimica et Biophysica Acta Molecular Cell Research, 1773, 1732–1746.

    Article  CAS  Google Scholar 

  15. Chen, J.-Q., & Russo, J. (2008). Mitochondrial estrogen receptors and their potential implications in estrogen carcinogenesis in human breast cancer. Journal of Nutritional and Environmental Medicine, 17, 76–89.

    Article  Google Scholar 

  16. Mello, M. L., Russo, P. A., Russo, J., Vidal, B. C., & Benedicto, C. (2007). 17-β-estradiol affects nuclear image properties in MCF-10F human breast epithelial cells with tumorigenesis. Oncology Report, 18, 1475–1481.

    Google Scholar 

  17. Saeed, M., Rogan, E., Fernandez, S. V., Sheriff, F., Russo, J., & Cavalieri, E. (2007). Formation of depurinating N3Adenine and N7Guanine adducts by MCF-10F cells cultured in the presence of 4-hydroxyestradiol. International Journal of Cancer, 120, 1821–1824.

    Article  CAS  PubMed  Google Scholar 

  18. Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., et al. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. Journal of Clinical Investigation, 121, 2750–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan, D. S., Marchió, C., Jones, R. L., Savage, K., Smith, I. E., Dowsett, M., et al. (2008). Triple negative breast cancer: Molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Research and Treatment, 111, 27–44.

    Article  CAS  PubMed  Google Scholar 

  20. Kao, J., Salari, K., Bocanegra, M., Choi, Y.-L., Girard, L., Gandhi, J., et al. (2009). Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One, 4, e6146.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10, 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grigoriadis, A., Mackay, A., Noel, E., Wu, P. J., Natrajan, R., Frankum, J., et al. (2012). Molecular characterisation of cell line models for triple-negative breast cancers. BMC Genomics, 13, 619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yunokawa, M., Koizumi, F., Kitamura, Y., Katanasaka, Y., Okamoto, N., Kodaira, M., et al. (2012). Efficacy of everolimus, a novel mTOR inhibitor, against basal-like triple-negative breast cancer cells. Cancer Science, 103, 1665–1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tate, C. R., Rhodes, L. V., Segar, H. C., Driver, J. L., Pounder, F. N., Burow, M. E., et al. (2012). Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Research, 14, R79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fillmore, C. M., & Kuperwasser, C. (2008). Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Research, 10, R25.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Flanagan, L., Van Weelden, K., Ammerman, C., Ethier, S. P., & Welsh, J. (1999). SUM-159PT cells: A novel estrogen independent human breast cancer model system. Breast Cancer Research and Treatment, 58, 193–204.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, D., LaFortune, T. A., Krishnamurthy, S., Esteva, F. J., Cristofanilli, M., Liu, P., et al. (2009). Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis in inflammatory breast cancer. Clinical Cancer Research, 15, 6639–6648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su, Y., Pogash, T. J., Nguyen, T. D., & Russo, J. (2016). Development and characterization of two human triple-negative breast cancer cell lines with highly tumorigenic and metastatic capabilities. Cancer Medicine, 5, 558–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woelfle, U., Sauter, G., Santjer, S., Brakenhoff, R., & Pantel, K. (2004). Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clinical Cancer Research, 10, 2670–2674.

    Article  CAS  PubMed  Google Scholar 

  30. Su, Y., Gutiérrez-Diez, P. J., Santucci-Pereira, J., Russo, I. H., & Russo, J. (2014). In situ methods for identifying the stem cell of the normal and cancerous breast. In J. Russo & I. H. Russo (Eds.), Techniques and methodological approaches in breast cancer research (1st ed., pp. 151–182). New York: Springer.

    Chapter  Google Scholar 

  31. Aguiar, F. N., Mendes, H. N., Cirqueira, C. S., Bacchi, C. E., & Carvalho, F. M. (2013). Basal cytokeratin as a potential marker of low risk of invasion in ductal carcinoma in situ. Clinics, 68, 638–643.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Morel, A. P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3, e28882008.

    Article  Google Scholar 

  33. Mani, S. A., Guo, W., Liao, M.-J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xue, C., Plieth, D., Venkov, C., Xu, C., & Neilson, E. G. (2003). The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Research, 63, 3386–3394.

    CAS  PubMed  Google Scholar 

  35. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100, 3983–3988.

    Article  CAS  Google Scholar 

  36. Sheridan, C., Kishimoto, H., Fuchs, R. K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C. H., et al. (2006). CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: An early step necessary for metastasis. Breast Cancer Research, 8, R59.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wright, M. H., Calcagno, A. M., Salcido, C. D., Carlson, M. D., Ambudkar, S. V., & Varticovski, L. (2008). Brca1 breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics. Breast Cancer Research, 10, R10.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lin, C.-W., Liao, M.-Y., Lin, W.-W., Wang, Y.-P., Lu, T.-Y., & Wu, H.-C. (2012). Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition gene expression in colon cancer. The Journal of Biological Chemistry, 287, 39449–39459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maetzel, D., Denzel, S., Mack, B., Canis, M., Went, P., Benk, M., et al. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.

    Article  CAS  PubMed  Google Scholar 

  40. Thampoe, I. J., Ng, J. S., & Lloyd, K. O. (1988). Biochemical analysis of a human epithelial surface antigen: Differential cell expression and processing. Archives of Biochemistry and Biophysics, 267, 342–352.

    Article  CAS  PubMed  Google Scholar 

  41. Keller, P. J., Lin, A. F., Arendt, L. M., Klebba, I., Jones, A. D., Rudnick, J. A., et al. (2010). Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Research, 12, R87.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gorges, T. M., Tinhofer, I., Drosch, M., Rose, L., Zollner, T. M., Krahn, T., et al. (2012). Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer, 12, 178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mego, M., De Giorgi, U., Dawood, S., Wang, X., Valero, V., Andreopoulou, E., et al. (2011). Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. International Journal of Cancer, 129, 417–423.

    Article  CAS  PubMed  Google Scholar 

  44. Sieuwerts, A. M., Kraan, J., Bolt, J., van der Spoel, P., Elstrodt, F., Schutte, M., et al. (2009). Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Journal of the National Cancer Institute, 101, 61–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayes, D. F. C. M. (2009). Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Journal of the National Cancer Institute, 101, 894–895.

    Article  PubMed  Google Scholar 

  46. Van Laere, S. J., Elst, H., Peeters, D., Benoy, I., Vermeulen, P. B., & Dirix, L. Y. (2009). Re: Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Journal of the National Cancer Institute, 101, 895–896.

    Article  PubMed  Google Scholar 

  47. Connelly, M., Wang, Y., Doyle, G. V., Terstappen, L., & McCormack, R. (2009). Re: Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Journal of the National Cancer Institute, 101, 895.

    Article  PubMed  Google Scholar 

  48. Balzar, M., Briaire-de Bruijn, I., Rees-Bakker, H., Prins, F., Helfrich, W., De Leij, L., et al. (2001). Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Molecular and Cellular Biology, 21, 2570–2580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mello, M. L., Russo, P. A., Russo, J., & Vidal, B. C. (2007). 17-ß-estradiol affects nuclear image properties in MCF-10Fhuman breast epithelial cells with tumorigenesis. Oncology Reports, 18, 1475–1481.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pennsylvania Cancer Cure Grant 6914101, the NIH core grant CA06927 to Fox Chase Cancer Center, the Barbara and Joseph Breitman donation, and the Flyers wives donation. The compound SGI-110 was provided by Astex Pharmaceuticals, Inc., Dublin CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Russo, J., Su, Y. (2019). An In Vitro Model of Triple-Negative Breast Cancer. In: Rhim, J., Dritschilo, A., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 1164. Springer, Cham. https://doi.org/10.1007/978-3-030-22254-3_3

Download citation

Publish with us

Policies and ethics