Skip to main content

The Aging Skeleton

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1164))

Abstract

Skeletal aging begins after peak bone mass is reached; progressive bone loss then occurs. Peak bone mass may occur at different ages in different skeletal sites and varies between sexes. Accelerated loss of bone occurs in the perimenopausal period in women, whereas more gradual but progressive loss of bone occurs in aging men. Changes in bone quality as well as bone quantity occur during growth and subsequent aging. These include changes in bone microarchitecture which may differ between cortical and trabecular compartments and in different sites, and may impact on bone size and geometry. Changes in material properties of bone matrix may also occur with aging. Loss of bone quantity and altered bone quality with aging may weaken bones and culminate in osteoporosis with an increased risk of fractures. Both genetic and epigenetic mechanisms may predispose to osteoporosis. Cellular and molecular events underlie the alterations in bone quantity and quality. Osteoclastic bone resorption and osteoblastic bone formation, tightly regulated by hormones, growth factors, and cytokines, are organized in coordinated activities resulting in remodeling and modeling. Malignancies, and anti-neoplastic therapies, may impact on the cellular and molecular events in the aging skeleton and produce focal or diffuse skeletal lesions and fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waning, D. L., & Guise, T. A. (2014). Molecular mechanisms of bone metastasis and associated muscle weakness. Clinical Cancer Research, 20, 3071–3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goltzman, D., Karaplis, A. C., Kremer, R., et al. (2000). Molecular basis of the spectrum of skeletal complications of neoplasia. Cancer, 88, 2903–2908.

    Article  CAS  PubMed  Google Scholar 

  3. Sims, N. A., & Martin, T. J. (2014). Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. BoneKEy Reports, 3, 481.

    PubMed  PubMed Central  Google Scholar 

  4. Berger, C., Goltzman, D., Langsetmo, L., et al. (2010). Peak bone mass from longitudinal data: Implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. Journal of Bone and Mineral Research, 25, 1948–1957.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berger, C., Langsetmo, L., Joseph, L., et al. (2008). Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ, 178, 1660–1668.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koller, D. L., Zheng, H. F., Karasik, D., et al. (2013). Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPS associated with bone mineral density in premenopausal women. Journal of Bone and Mineral Research, 28, 547–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Estrada, K., Styrkarsdottir, U., Evangelou, E., et al. (2012). Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genetics, 44, 491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheishvili, D., Parashar, S., Mahmood, N., et al. (2018). Identification of an epigenetic signature of osteoporosis in blood DNA of postmenopausal women. Journal of Bone and Mineral Research, 33, 1980–1989.

    Article  CAS  PubMed  Google Scholar 

  9. Macdonald, H. M., Nishiyama, K. K., Kang, J., et al. (2011). Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: A population-based HR-pQCT study. Journal of Bone and Mineral Research, 26, 50–62.

    Article  PubMed  Google Scholar 

  10. Nishiyama, K. K., Macdonald, H. M., Buie, H. R., et al. (2010). Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: An in vivo HR-pQCT study. Journal of Bone and Mineral Research, 25, 882–890.

    PubMed  Google Scholar 

  11. Boskey, A. L., & Imbert, L. (2017). Bone quality changes associated with aging and disease: A review. Annals of the New York Academy of Sciences, 1410, 93–106.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yasuda, T., Banville, D., Hendy, G. N., et al. (1989). Characterization of the human parathyroid hormone-like peptide gene. The Journal of Biological Chemistry, 264, 7720–7725.

    CAS  PubMed  Google Scholar 

  13. Seymour, J. F., Gagel, R. F., Hagemeister, F. B., et al. (1994). Calcitriol production in hypercalcemia and normocalcemia patients with non-Hodgkin lymphoma. Annals of Internal Medicine, 121, 633–640.

    Article  CAS  PubMed  Google Scholar 

  14. Spring, L. M., Gupta, A., Reynolds, K. L., et al. (2016). Neoadjuvant endocrine therapy for estrogen receptor-positive breast cancer: A systematic review and meta-analysis. JAMA Oncology, 2, 1477–1486.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Glassman, D., Hignett, S., Rehman, S., et al. (2017). Adjuvant endocrine therapy for hormone-positive breast Cancer, focusing on ovarian suppression and extended treatment: An update. Anticancer Research, 37, 5329–5341.

    CAS  PubMed  Google Scholar 

  16. Handforth, C., D’Oronzo, S., Coleman, R., et al. (2018). Cancer treatment and bone health. Calcified Tissue International, 102, 251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Falahati-Nini, A., Riggs, B. L., Atkinson, E. J., et al. (2000). Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. The Journal of Clinical Investigation, 106, 1553–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burnett-Bowie, S. A., McKay, E. A., Lee, H., et al. (2009). Effects of aromatase inhibition on bone mineral density and bone turnover in older men with low testosterone levels. The Journal of Clinical Endocrinology and Metabolism, 94, 4785–4792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eriksson, A. L., Perry, J. R. B., Coviello, A. D., et al. (2018). Genetic determinants of circulating estrogen levels and evidence of a causal effect of estradiol on bone density in men. The Journal of Clinical Endocrinology and Metabolism, 103, 991–1004.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Coleman, R. E., Rathbone, E., & Brown, J. E. (2013). Management of cancer treatment-induced bone loss. Nature Reviews Rheumatology, 9, 365–374.

    Article  CAS  PubMed  Google Scholar 

  21. Baron, R., Ferrari, S., & Russell, R. G. (2011). Denosumab and bisphosphonates: Different mechanisms of action and effects. Bone, 48, 677–692.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes for Health Research.

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Goltzman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goltzman, D. (2019). The Aging Skeleton. In: Rhim, J., Dritschilo, A., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 1164. Springer, Cham. https://doi.org/10.1007/978-3-030-22254-3_12

Download citation

Publish with us

Policies and ethics