Skip to main content

Effects of Input Data Formalisation in Relational Concept Analysis for a Data Model with a Ternary Relation

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2019)

Abstract

Today pesticides, antimicrobials and other pest control products used in conventional agriculture are questioned and alternative solutions are searched out. Scientific literature and local knowledge describe a significant number of active plant-based products used as bio-pesticides. The Knomana (KNOwledge MANAgement on pesticide plants in Africa) project aims to gather data about these bio-pesticides and implement methods to support the exploration of knowledge by the potential users (farmers, advisers, researchers, retailers, etc.). Considering the needs expressed by the domain experts, Formal Concept Analysis (FCA) appears as a suitable approach, due do its inherent qualities for structuring and classifying data through conceptual structures that provide a relevant support for data exploration. The Knomana data model used during the data collection is an entity-relationship model including both binary and ternary relationships between entities of different categories. This leads us to investigate the use of Relational Concept Analysis (RCA), a variant of FCA on these data. We consider two different encodings of the initial data model into sets of object-attribute contexts (one for each entity category) and object-object contexts (relationships between entity categories) that can be used as an input for RCA. These two encodings are studied both quantitatively (by examining the produced conceptual structures size) and qualitatively, through a simple, yet real, scenario given by a domain expert facing a pest infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://dataqual.engees.unistra.fr/logiciels/rcaExplore.

  2. 2.

    Aspergillus genus groups several species of microscopic fungi.

  3. 3.

    http://www.lirmm.fr/AOC-poset-Builder/.

  4. 4.

    https://www.lirmm.fr/cogui/.

References

  1. Baader, F., Distel, F.: A finite basis for the set of \(\cal{EL}\)-implications holding in a finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 46–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78137-0_4

    Chapter  Google Scholar 

  2. Bazin, A., Carbonnel, J., Huchard, M., Kahn, G.: On-demand relational concept analysis. CoRR abs/1803.07847 (2018). http://arxiv.org/abs/1803.07847

  3. Bazin, A., Carbonnel, J., Huchard, M., Kahn, G., Keip, P., Ouzerdine, A.: On-demand relational concept analysis. In: Cristea, D., et al. (eds.) ICFCA 2019, LNAI 11511, pp. 155–172. Springer, Cham (2019)

    Google Scholar 

  4. Dicky, H., Dony, C., Huchard, M., Libourel, T.: Ares, adding a class and restructuring inheritance hierarchy. In: Onzièmes Journées Bases de Données Avancées, Nancy, France (Informal Proceedings), pp. 25–42 (1995)

    Google Scholar 

  5. Ferré, S.: A proposal for extending formal concept analysis to knowledge graphs. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 271–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_17

    Chapter  MATH  Google Scholar 

  6. Ferré, S., Cellier, P.: How hierarchies of concept graphs can facilitate the interpretation of RCA lattices? In: 14th International Conference CLA 2018, Olomouc, Czech Republic, pp. 69–80 (2018)

    Google Scholar 

  7. Ferré, S., Ridoux, O., Sigonneau, B.: Arbitrary relations in formal concept analysis and logical information systems. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS-ConceptStruct 2005. LNCS (LNAI), vol. 3596, pp. 166–180. Springer, Heidelberg (2005). https://doi.org/10.1007/11524564_11

    Chapter  Google Scholar 

  8. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8_10

    Chapter  Google Scholar 

  9. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  10. Guédi, A.O., Huchard, M., Miralles, A., Nebut, C.: Sizing the underlying factorization structure of a class model. In: 17th IEEE International Conference EDOC 2013, Vancouver, BC, Canada, pp. 167–172 (2013)

    Google Scholar 

  11. Hacene, M.R., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)

    Article  MathSciNet  Google Scholar 

  12. Kötters, J.: Concept lattices of a relational structure. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS-ConceptStruct 2013. LNCS (LNAI), vol. 7735, pp. 301–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35786-2_23

    Chapter  Google Scholar 

  13. Kuznetsov, S.O., Makhalova, T.P.: On interestingness measures of formal concepts. CoRR abs/1611.02646 (2016). http://arxiv.org/abs/1611.02646

  14. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: 3rd International Conference ICCS 1995, Santa Cruz, California, USA, pp. 32–43 (1995)

    Google Scholar 

  15. Liquière, M., Sallantin, J.: Structural machine learning with galois lattice and graphs. In: ICML, Madison, Wisconsin, pp. 305–313 (1998)

    Google Scholar 

  16. van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: a new incremental algorithm for constructing concept lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_31

    Chapter  MATH  Google Scholar 

  17. Mimouni, N., Nazarenko, A., Salotti, S.: A conceptual approach for relational IR: application to legal collections. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 303–318. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_19

    Chapter  Google Scholar 

  18. Miralles, A., Molla, G., Huchard, M., Nebut, C., Deruelle, L., Derras, M.: Class model normalization - outperforming formal concept analysis approaches with aoc-posets. In: 12th International Conference on CLA 2015, Clermont-Ferrand, France, pp. 111–122 (2015). http://ceur-ws.org/Vol-1466/paper09.pdf

  19. Nica, C., Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Extracting hierarchies of closed partially-ordered patterns using relational concept analysis. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 17–30. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40985-6_2

    Chapter  Google Scholar 

  20. Ouzerdine, A., Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Régler le processus d’exploration dans l’analyse relationnelle de concepts. le cas de données hydroécologiques. In: Actes de la 19e conférence sur l’extraction et la gestion de connaissances (EGC 2019). Nouvelles Technologies de l’Information (2019)

    Google Scholar 

  21. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with Titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

    Article  Google Scholar 

  22. Voutsadakis, G.: Polyadic concept analysis. Order 19(3), 295–304 (2002). https://doi.org/10.1023/A:1021252203599

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the French National Research Agency under the Investments for the Future Program, referred as ANR-16-CONV-0004 and by INRA-CIRAD GloFoodS metaprogram (KNOMANA project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla Keip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keip, P. et al. (2019). Effects of Input Data Formalisation in Relational Concept Analysis for a Data Model with a Ternary Relation. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds) Formal Concept Analysis. ICFCA 2019. Lecture Notes in Computer Science(), vol 11511. Springer, Cham. https://doi.org/10.1007/978-3-030-21462-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21462-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21461-6

  • Online ISBN: 978-3-030-21462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics