Skip to main content

Robust Multimodal Image Registration Using Deep Recurrent Reinforcement Learning

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Abstract

The crucial components of a conventional image registration method are the choice of the right feature representations and similarity measures. These two components, although elaborately designed, are somewhat handcrafted using human knowledge. To this end, these two components are tackled in an end-to-end manner via reinforcement learning in this work. Specifically, an artificial agent, which is composed of a combined policy and value network, is trained to adjust the moving image toward the right direction. We train this network using an asynchronous reinforcement learning algorithm, where a customized reward function is also leveraged to encourage robust image registration. This trained network is further incorporated with a lookahead inference to improve the registration capability. The advantage of this algorithm is fully demonstrated by our superior performance on clinical MR and CT image pairs to other state-of-the-art medical image registration methods.

Supported in part by the National Natural Science Foundation of China under Grant 61602065, Sichuan province Key Technology Research and Development project under Grant 2017RZ0013, Scientific Research Foundation of the Education Department of Sichuan Province under Grant No. 17ZA0062; J201608 supported by Chengdu University of Information and Technology (CUIT) Foundation for Leaders of Disciplines in Science, project KYTZ201610 supported by the Scientific Research Foundation of CUIT.

S. Sun and J. Hu—Contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24

    Chapter  Google Scholar 

  2. Zhao, C., Zhao, H., Lv, J., Sun, S., Li, B.: Multimodal image matching based on multimodality robust line segment descriptor. Neurocomputing 177, 290–303 (2016)

    Article  Google Scholar 

  3. Liao, S., Chung, A.C.S.: Feature based nonrigid brain MR image registration with symmetric alpha stable filters. IEEE Trans. Med. Imaging 29, 106–119 (2010)

    Article  Google Scholar 

  4. Razlighi, Q.R., Kehtarnavaz, N., Yousefi, S.: Evaluating similarity measures for brain image registration. J. Vis. Commun. Image Represent. 27, 977–987 (2013)

    Article  Google Scholar 

  5. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  6. Uzunova, H., Wilms, M., Handels, H., Ehrhardt, J.: Training CNNs for image registration from few samples with model-based data augmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 223–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_26

    Chapter  Google Scholar 

  7. Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A deep metric for multimodal registration. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 10–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_2

    Chapter  Google Scholar 

  8. Wu, G., Kim, M., Wang, Q., Gao, Y., Liao, S., Shen, D.: Unsupervised deep feature learning for deformable registration of MR brain images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 649–656. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_80

    Chapter  Google Scholar 

  9. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  10. Cao, X., et al.: Deformable image registration based on similarity-steered CNN regression. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 300–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_35

    Chapter  Google Scholar 

  11. Liao, R., et al.: An artificial agent for robust image registration. In: AAAI, pp. 4168–4175 (2017)

    Google Scholar 

  12. Krebs, J., et al.: Robust non-rigid registration through agent-based action learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 344–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_40

    Chapter  Google Scholar 

  13. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  14. Bellver, M., Giró-i Nieto, X., Marqués, F., Torres, J.: Hierarchical object detection with deep reinforcement learning. arXiv preprint arXiv:1611.03718 (2016)

  15. Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement learning. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2488–2496. IEEE (2015)

    Google Scholar 

  16. Luo, W., Sun, P., Mu, Y., Liu, W.: End-to-end active object tracking via reinforcement learning. arXiv preprint arXiv:1705.10561 (2017)

  17. Ren, Z., Wang, X., Zhang, N., Lv, X., Li, L.J.: Deep reinforcement learning-based image captioning with embedding reward. arXiv preprint arXiv:1704.03899 (2017)

  18. Tan, B., Xu, N., Kong, B.: Autonomous driving in reality with reinforcement learning and image translation. arXiv preprint arXiv:1801.05299 (2018)

  19. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937 (2016)

    Google Scholar 

  20. Yang, X., Kwitt, R., Niethammer, M.: Fast predictive image registration. In: Carneiro, G., et al. (eds.) LABELS/DLMIA-2016. LNCS, vol. 10008, pp. 48–57. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_6

    Chapter  Google Scholar 

  21. Miao, S., Wang, Z.J., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35, 1352–1363 (2016)

    Article  Google Scholar 

  22. Ma, K., et al.: Multimodal image registration with deep context reinforcement learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_28

    Chapter  Google Scholar 

  23. Zhao, D., Hu, Z., Xia, Z., Alippi, C., Zhu, Y., Wang, D.: Full-range adaptive cruise control based on supervised adaptive dynamic programming. Neurocomputing 125, 57–67 (2014)

    Article  Google Scholar 

  24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  25. Fitzpatrick, J.M., West, J.B.: The distribution of target registration error in rigid-body point-based registration. IEEE Trans. Med. Imaging 20, 917–927 (2001)

    Article  Google Scholar 

  26. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  27. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 4116 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, S. et al. (2019). Robust Multimodal Image Registration Using Deep Recurrent Reinforcement Learning. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics