Skip to main content

Deep Convolutional Compressed Sensing for LiDAR Depth Completion

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11361))

Included in the following conference series:

Abstract

In this paper we consider the problem of estimating a dense depth map from a set of sparse LiDAR points. We use techniques from compressed sensing and the recently developed Alternating Direction Neural Networks (ADNNs) to create a deep network which performs multi-layer convolutional compressed sensing. Our architecture internally performs the optimization for extracting convolutional sparse codes from the input which are then used to make a prediction. Our results demonstrate that with only three layers and 1800 parameters we achieve performance which is competitive with the state of the art, including deep networks with orders of magnitude more parameters and layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barron, J.T., Poole, B.: The fast bilateral solver. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 617–632. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_38

    Chapter  Google Scholar 

  2. Cissé, M., Bojanowski, P., Grave, E., Dauphin, Y., Usunier, N.: Parseval networks: improving robustness to adversarial examples. In: ICML (2017)

    Google Scholar 

  3. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NIPS (2014)

    Google Scholar 

  4. Ferstl, D., Reinbacher, C., Ranftl, R., Ruether, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: 2013 IEEE International Conference on Computer Vision, pp. 993–1000, December 2013. https://doi.org/10.1109/ICCV.2013.127

  5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361, June 2012. https://doi.org/10.1109/CVPR.2012.6248074

  6. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR (2017)

    Google Scholar 

  7. Hawe, S., Kleinsteuber, M., Diepold, K.: Dense disparity maps from sparse disparity measurements. In: 2011 International Conference on Computer Vision, pp. 2126–2133, November 2011. https://doi.org/10.1109/ICCV.2011.6126488

  8. Jampani, V., Kiefel, M., Gehler, P.V.: Learning sparse high dimensional filters: image filtering, dense CRFs and bilateral neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  9. Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep learning for monocular depth map prediction. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. https://doi.org/10.1109/cvpr.2017.238

  10. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)

    Google Scholar 

  11. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5162–5170, June 2015. https://doi.org/10.1109/CVPR.2015.7299152

  12. Liu, L., Chan, S.H., Nguyen, T.Q.: Depth reconstruction from sparse samples: representation, algorithm, and sampling. IEEE Trans. Image Process. 24(6), 1983–1996 (2015). https://doi.org/10.1109/TIP.2015.2409551

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8, May 2018. https://doi.org/10.1109/ICRA.2018.8460184

  14. Ma, F., Carlone, L., Ayaz, U., Karaman, S.: Sparse sensing for resource-constrained depth reconstruction. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 96–103. IEEE (2016)

    Google Scholar 

  15. Murdock, C., Chang, M.-F., Lucey, S.: Deep component analysis via alternating direction neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 851–867. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_50

    Chapter  Google Scholar 

  16. Nadaraya, E.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964). https://doi.org/10.1137/1109020

    Article  MATH  Google Scholar 

  17. Papyan, V., Romano, Y., Sulam, J., Elad, M.: Theoretical foundations of deep learning via sparse representations: a multilayer sparse model and its connection to convolutional neural networks. IEEE Signal Process. Mag. 35(4), 72–89 (2018). https://doi.org/10.1109/MSP.2018.2820224

    Article  MATH  Google Scholar 

  18. Riegler, G., Rüther, M., Bischof, H.: ATGV-Net: accurate depth super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 268–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_17

    Chapter  Google Scholar 

  19. Schneider, N., Schneider, L., Pinggera, P., Franke, U., Pollefeys, M., Stiller, C.: Semantically guided depth upsampling. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 37–48. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_4

    Chapter  Google Scholar 

  20. Sulam, J., Papyan, V., Romano, Y., Elad, M.: Multilayer convolutional sparse modeling: pursuit and dictionary learning. IEEE Trans. Signal Process. 66(15), 4090–4104 (2018). https://doi.org/10.1109/TSP.2018.2846226

    Article  MathSciNet  MATH  Google Scholar 

  21. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. CoRR (2017). http://arxiv.org/abs/1708.06500v2

  22. Watson, G.S.: Smooth regression analysis. Sankhyā: Indian J. Stat. Ser. A (1961–2002) 26(4), 359–372 (1964). http://www.jstor.org/stable/25049340

    MathSciNet  MATH  Google Scholar 

  23. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1529–1537, December 2015. https://doi.org/10.1109/ICCV.2015.179

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathaniel Chodosh , Chaoyang Wang or Simon Lucey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chodosh, N., Wang, C., Lucey, S. (2019). Deep Convolutional Compressed Sensing for LiDAR Depth Completion. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20887-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20886-8

  • Online ISBN: 978-3-030-20887-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics