Skip to main content

Paired-D GAN for Semantic Image Synthesis

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

Abstract

Semantic image synthesis is to render foreground (object) given as a text description into a given source image. This has a wide range of applications such as intelligent image manipulation, and is helpful to those who are not good at painting. We propose a generative adversarial network having a pair of discriminators with different architectures, called Paired-D GAN, for semantic image synthesis where the two discriminators make different judgments: one for foreground synthesis and the other for background synthesis. The generator of paired-D GAN has the encoder-decoder architecture with skip-connections and synthesizes an image matching the given text description while preserving other parts of the source image. The two discriminators judge foreground and background of the synthesized image separately to meet an input text description and a source image. The paired-D GAN is trained using the effective adversarial learning process in a simultaneous three-player minimax game. Experimental results on the Caltech-200 bird dataset and the Oxford-102 flower dataset show that Paired-GAN is capable of semantically synthesizing images to match an input text description while retaining the background in a source image against the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, H., Yu, S., Wu, C., Guo, Y.: Semantic image synthesis via adversarial learning. In: ICCV (2017)

    Google Scholar 

  2. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text-to-image synthesis. In: ICML (2016)

    Google Scholar 

  3. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2Image: conditional image generation from visual attributes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 776–791. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_47

    Chapter  Google Scholar 

  4. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH (2001)

    Google Scholar 

  5. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  7. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  9. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20

    Chapter  Google Scholar 

  10. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  11. Zhang, H., et al.: StackGAN++: realistic image synthesis with stacked generative adversarial networks. arXiv: 1710.10916 (2017). (IEEE TPAMI, to appear)

  12. Nguyen, T., Le, T., Vu, H., Phung, D.: Dual discriminator generative adversarial nets. In: NIPS (2017)

    Google Scholar 

  13. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. California Institute of Technology, Technical report CNS-TR-2011-001 (2011)

    Google Scholar 

  14. Nilsback, M.-E., Zisserman, A.: Automated flower classification over a large number of classes. In: Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing (2008)

    Google Scholar 

  15. Yang, J., Kannan, A., Batra, D., Parikh, D.: LR-GAN: layered recursive generative adversarial networks for image generation. In: ICLR (2017)

    Google Scholar 

  16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  17. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)

    Google Scholar 

  18. Van Den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: ICML (2016)

    Google Scholar 

  19. Van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional image generation with pixelcnn decoders. In: NIPS (2016)

    Google Scholar 

  20. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: NIPS (2016)

    Google Scholar 

  21. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)

    Google Scholar 

  22. Zhu, J.-Y., et al.: Toward multimodal image-to-image translation. In: NIPS (2017)

    Google Scholar 

  23. Perarnau, G., van de Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. In: NIPS Workshop on Adversarial Training (2016)

    Google Scholar 

  24. Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43

    Chapter  Google Scholar 

  25. Reed, S., Akata, Z., Lee, H., Schiele, B.: Learning deep representations of fine-grained visual descriptions. In: CVPR (2016)

    Google Scholar 

  26. Reed, S., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and where to draw. In: NIPS (2016)

    Google Scholar 

  27. Ha, M.L., Franchi, G., Moller, M., Kolb, A., Blanz, V.: Segmentation and shape extraction from convolutional neural networks. In: WACV (2018)

    Google Scholar 

  28. Wu, R., Li, X., Yang, B.: Identifying computer generated graphics via histogram features. In: ICIP (2011)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  30. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  31. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  33. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  34. Ashish Bora, A.D., Price, E.: AmbientGAN: generative models from lossy measurements. In: ICLR (2018)

    Google Scholar 

  35. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (2005)

    Google Scholar 

  36. https://github.com/woozzu/dong_iccv_2017. Accessed 01 June 2018

  37. https://github.com/jwyang/lr-gan.pytorch. Accessed 01 June 2018

  38. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  39. Salimans, T., et al.: Improved techniques for training GANs. In: NIPS (2016)

    Google Scholar 

  40. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Minh Vo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vo, D.M., Sugimoto, A. (2019). Paired-D GAN for Semantic Image Synthesis. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics