Skip to main content

Enhancing Supply Chain Risk Management by Applying Machine Learning to Identify Risks

  • Conference paper
  • First Online:
Business Information Systems (BIS 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 354))

Included in the following conference series:

Abstract

Supply chain risks negatively affect the success of an OEM in automotive industry. Finding relevant information for supply chain risk management (SCRM) is a critical task. This investigation utilizes machine learning to find risk within textual documents. It contributes to the supply chain management (SCM) by designing (i) a conceptual model for supply risk identification in textual data. This addresses the requirement to see the direct connection between data analytics and SCM. (ii) An experiment in which a prototype is evaluated contributes the requirement to have more empirical insight in the interdisciplinary field of data analytics in SCRM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Frequent words that carry irrelevant information (i.e. pronouns, prepositions, conjunctions, etc.) [22]. In https://github.com/stopwords-iso/stopwords-de/blob/master/raw/stop-words-german.txt (accessed 09.08.2018).

  2. 2.

    Stemming is the process of removing suffixes from a term to generate word stems [27].

  3. 3.

    http://ana.cachopo.org/datasets-for-single-label-text-categorization.

  4. 4.

    http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.

  5. 5.

    http://sites.labic.icmc.usp.br/text.

  6. 6.

    http://qwone.com/~jason/20Newsgroups/.

  7. 7.

    https://opennlp.apache.org/docs/1.8.0/manual/opennlp.html#tools.tokenizer.

  8. 8.

    https://github.com/stopwords-iso/stopwords-de/blob/master/stopwords-de.txt.

  9. 9.

    https://github.com/snowballstem.

  10. 10.

    http://snowballstem.org/algorithms/german/stemmer.html.

  11. 11.

    The distribution of the supply risk is approximately retained in training and test set.

References

  1. Tang, C.S.: Perspectives in supply chain risk management. Int. J. Prod. Econ. 103, 451–488 (2006)

    Article  Google Scholar 

  2. Tiwari, S., Wee, H.M., Daryanto, Y.: Big data analytics in supply chain management between 2010 and 2016: insights to industries. Comput. Ind. Eng. 115, 319–330 (2018)

    Article  Google Scholar 

  3. Wang, G., Gunasekaran, A., Ngai, E.W.T., Papadopoulos, T.: Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int. J. Prod. Econ. 176, 98–110 (2016)

    Article  Google Scholar 

  4. Gunasekaran, A., et al.: Big data and predictive analytics for supply chain and organizational performance. J. Bus. Res. 70, 308–317 (2017)

    Article  Google Scholar 

  5. Waller, M.A., Fawcett, S.E.: Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J. Bus. Logistics 34(2), 77–84 (2013)

    Article  Google Scholar 

  6. Ho, W., Zheng, T., Yildiz, H., Talluri, S.: Supply chain risk management: a literature review. Int. J. Prod. Econ. 53(16), 5031–5069 (2015)

    Article  Google Scholar 

  7. Thun, J., Hoenig, D.: An empirical analysis of supply chain risk management in the German automotive industry. Int. J. Prod. Econ. 131, 242–249 (2011)

    Article  Google Scholar 

  8. Ellis, S.C., Henry, R.M., Shockley, J.: Buyer perceptions of supply disruption risk: a behavioral view and empirical assessment. J. Oper. Manag. 28, 34–46 (2010)

    Article  Google Scholar 

  9. ISO 31000:2018: Risk management – guidelines

    Google Scholar 

  10. Walsworth, J.: Fire, explosions rip through instrument panel plant in Michigan. In: automotivenews.com by Crain Communications Inc., 2 May 2018. http://www.autonews.com/article/20180502/OEM10/180509951/fire-magnesium-supplier-general-motors-michigan. Accessed 30 July 2018

  11. Offermann, P., Blom, S., Schönherr, M., Bub, U.: Artifact types in information systems design science – a literature review. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 77–92. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13335-0_6

    Chapter  Google Scholar 

  12. Johannesson, P., Perjons, E.: A method framework for design science research. In: An Introduction to Design Science, pp. 75–89. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10632-8_4

    Google Scholar 

  13. Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 163–222. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-3223-4_6

    Chapter  Google Scholar 

  14. Liu, A.B.: Web data mining: exploring hyperlinks, contents, and usage data. Springer (2007)

    Google Scholar 

  15. Abbasi, A., Chen, H.: CyberGate: a system and design framework for text analysis of computer-mediated communication. MIS Q. 32(4), 811–837 (2008)

    Article  Google Scholar 

  16. Altınel, B., Ganiz, M. C., Diri, B.: A corpus-based semantic kernel for text classification by using meaning values of terms. In: Engineering Applications of Artificial Intelligence, vol. 43, pp. 54–66 (2015)

    Article  Google Scholar 

  17. Mironczuk, M.M., Protasiewicz, J.: A recent overview of the state-of-the-art elements of text classification. Expert Syst. Appl. 106, 36–54 (2018)

    Article  Google Scholar 

  18. Chen, J., Huang, H., Tian, S., Qu, Y.: Feature selection for text classification with naive Bayes. Expert Syst. Appl. 36(3), 5432–5435 (2009)

    Article  Google Scholar 

  19. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

    MATH  Google Scholar 

  20. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proceedings of the 11th International Conference on machine learning, pp. 121–129. Morgan Kaufmann, San Francisco (1994)

    Chapter  Google Scholar 

  21. Zhu, J., Xie, Q., Zheng, K.: An improved early detection method of type-2 diabetes mellitus using multiple classifier system. Inf. Sci. 292, 1–14 (2015)

    Article  Google Scholar 

  22. Aas, K., Eikvil, L.: Text categorisation: a survey. Technical report. Norwegian Computing Center (1999)

    Google Scholar 

  23. Guzella, T.S., Caminhas, W.M.: A review of machine learning approaches to spam filtering. Expert Syst. Appl. 36(7), 10206–10222 (2009)

    Article  Google Scholar 

  24. Adeva, J.G., Atxa, J.P., Carrillo, M.U., Zengotitabengoa, E.A.: Automatic text classification to support systematic reviews in medicine. Expert Syst. Appl. 41(4, Part 1), 1498–1508 (2014)

    Article  Google Scholar 

  25. Altınel, B., Ganiz, M.C., Diri, B.: A novel higher-order semantic kernel. In: Proceedings of the IEEE 10th International Conference on Electronics Computer and Computation (ICECCO), pp. 216–219 (2013)

    Google Scholar 

  26. Ali, R., Lee, S., Chung, T.C.: Accurate multi-criteria decision making methodology for recommending machine learning algorithm. Expert Syst. Appl. 71, 257–278 (2017)

    Article  Google Scholar 

  27. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  28. Pinheiro, R.H.W., Cavalcanti, G.D.C., Tsang, I.R.: Combining dissimilarity spaces for text categorization. Inf. Sci. 406–407, 87–101 (2017)

    Article  Google Scholar 

  29. Sabbah, T., et al.: Modified frequency-based term weighting schemes for text classification. Appl. Soft Comput. 58, 193–206 (2017)

    Article  Google Scholar 

  30. Cardoso-Cachopo, A.: Improving methods for single-label text categorization. PdD Thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa (2007)

    Google Scholar 

  31. Slaton, G., McGill, M.J.: An Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    Google Scholar 

  32. Slaton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)

    Article  Google Scholar 

  33. Buckley, C., Slaton, G., Allan, J., Singhal, A.: Automatic query expansion using SMART: TREC 3. In: Proceedings of the 3rd Text Retrieval Conference, NIST (1994)

    Google Scholar 

  34. Dumais, S.T.: Improving the retrieval of information from external sources. Behav. Res. Methods Instrum. Comput. 23(2), 229–236 (1991)

    Article  Google Scholar 

  35. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. ICML 97, 412–420 (1997)

    Google Scholar 

  36. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  37. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 2:27:1–27:27 (2011)

    Article  Google Scholar 

  38. Greve, W., Wentura, D.: Wissenschaftliche Beobachtung. Eine Einführung. Psychologie Verlags Union, München (1997)

    Google Scholar 

  39. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)

    Article  Google Scholar 

  40. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University (2003)

    Google Scholar 

  41. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Candanedo, I.S., Nieves, E.H., González, S.R., Martín, M.T.S., Briones, A.G.: Machine learning predictive model for industry 4.0. In: Uden, L., Hadzima, B., Ting, I.-H. (eds.) KMO 2018. CCIS, vol. 877, pp. 501–510. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95204-8_42

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Pajam Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassan, A.P. (2019). Enhancing Supply Chain Risk Management by Applying Machine Learning to Identify Risks. In: Abramowicz, W., Corchuelo, R. (eds) Business Information Systems. BIS 2019. Lecture Notes in Business Information Processing, vol 354. Springer, Cham. https://doi.org/10.1007/978-3-030-20482-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20482-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20481-5

  • Online ISBN: 978-3-030-20482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics