Skip to main content

Variational Autoencoder with Truncated Mixture of Gaussians for Functional Connectivity Analysis

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

Resting-state functional connectivity states are often identified as clusters of dynamic connectivity patterns. However, existing clustering approaches do not distinguish major states from rarely occurring minor states and hence are sensitive to noise. To address this issue, we propose to model major states using a non-linear generative process guided by a Gaussian-mixture distribution in a low-dimensional latent space, while separately modeling the connectivity patterns of minor states by a non-informative uniform distribution. We embed this truncated Gaussian-Mixture model in a Variational AutoEncoder framework to obtain a general joint clustering and outlier detection approach, called tGM-VAE. When applied to synthetic data with known ground-truth, tGM-VAE is more accurate in clustering dynamic connectivity patterns than existing approaches. On the rs-fMRI data of 593 healthy adolescents from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study, tGM-VAE identified meaningful major connectivity states. The dwell time of these states significantly correlated with age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckner, R., Krienen, F., Yeo, B.: Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 16(7), 832–837 (2013)

    Article  Google Scholar 

  2. Allen, E., Damaraju, E., Plis, S., et al.: Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex 24(3), 663–676 (2014)

    Article  Google Scholar 

  3. Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., Breakspear, M.: Time-resolved resting-state brain networks. PNAS 111(28), 10341–10346 (2014)

    Article  Google Scholar 

  4. Damarajua, E., Allen, E., Belgerc, A., et al.: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clin. 5, 298–308 (2014)

    Article  Google Scholar 

  5. Yu, Q., Erhardt, E.B., Sui, J., et al.: Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia. NeuroImage 107, 345–355 (2015)

    Article  Google Scholar 

  6. Taghia, J., Ryali, S., et al.: Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI. NeuroImage 155, 271–290 (2017)

    Article  Google Scholar 

  7. Nielsen, S., Madsen, K., Røge, R., Schmidt, M.N., Mørup, M.: Nonparametric modeling of dynamic functional connectivity in fMRI data. In: Machine Learning and Interpretation in Neuroimaging Workshop (2015)

    Google Scholar 

  8. Blei, D.M., Jordan, M.I.: Variational inference for dirichlet process mixtures. Bayesian Anal. 1(1), 121–144 (2017)

    Article  MathSciNet  Google Scholar 

  9. Nalisnick, E., Smyth, P.: Stick-breaking variational autoencoders. In: ICLR (2017)

    Google Scholar 

  10. Zhao, Q., Kwon, D., Pohl, K.M.: A riemannian framework for longitudinal analysis of resting-state functional connectivity. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 145–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_17

    Chapter  Google Scholar 

  11. Kingma, D., Welling, M.: Auto-encoding variational bayes. In: ICLR (2013)

    Google Scholar 

  12. Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning with deep generative models. In: NIPS (2014)

    Google Scholar 

  13. Dilokthanakul, N., Mediano, P.A., Garnelo, M.: Deep unsupervised clustering with Gaussian mixture variational autoencoder (2017, preprint). arxiv.org/abs/1611.02648

  14. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an unsupervised and generative approach to clustering. In: IJCAI (2017)

    Google Scholar 

  15. Abbasnejad, E., Dick, A.R., van den Hengel, A.: Infinite variational autoencoder for semi-supervised learning. In: CVPR (2017)

    Google Scholar 

  16. Higgins, I., Matthey, L., Pal, A., et al.: Beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  17. Ebbers, J., et al.: Hidden Markov model variational autoencoder for acoustic unit discovery. In: InterSpeech (2017)

    Google Scholar 

  18. Müller-Oehring, E., Kwon, D., Nagel, B., Sullivan, E., et al.: Influences of age, sex, and moderate alcohol drinking on the intrinsic functional architecture of adolescent brains. Cerebral Cortex 28(3), 1049–1063 (2017)

    Article  Google Scholar 

  19. Rohlfing, T., Zahr, N., Sullivan, E., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2014)

    Article  Google Scholar 

  20. Chen, Y., Wiesel, A., Eldar, Y.C., Hero, A.O.: Shrinkage algorithms for MMSE covariance estimation. IEEE Trans. Sig. Process. 58(10), 5016–5029 (2010)

    Article  MathSciNet  Google Scholar 

  21. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2017)

    Article  Google Scholar 

  22. Chen, Y., Wang, W., et al.: Age-related decline in the variation of dynamic functional connectivity: a resting state analysis. Front Aging Neurosci. 9(23), 1–11 (2017)

    Google Scholar 

Download references

Acknowledgement

This research was supported in part by NIH grants U24AA021697-06, AA005965, AA013521, AA017168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Q., Honnorat, N., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M. (2019). Variational Autoencoder with Truncated Mixture of Gaussians for Functional Connectivity Analysis. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics