Skip to main content

3D Organ Shape Reconstruction from Topogram Images

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

Automatic delineation and measurement of main organs such as liver is one of the critical steps for assessment of hepatic diseases, planning and postoperative or treatment follow-up. However, addressing this problem typically requires performing computed tomography (CT) scanning and complicated post-processing of the resulting scans using slice-by-slice techniques. In this paper, we show that 3D organ shape can be automatically predicted directly from topogram images, which are easier to acquire and have limited exposure to radiation during acquisition, compared to CT scans. We evaluate our approach on the challenging task of predicting liver shape using a generative model. We also demonstrate that our method can be combined with user annotations, such as a 2D mask, for improved prediction accuracy. We show compelling results on 3D liver shape reconstruction and volume estimation on 2129 CT scans (This feature is based on research, and is not commercially available. Due to regulatory reasons its future availability cannot be guaranteed).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albarqouni, S., Fotouhi, J., Navab, N.: X-ray in-depth decomposition: revealing the latent structures. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 444–452. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_51

    Chapter  Google Scholar 

  2. Balashova, E., Singh, V., Wang, J., Teixeira, B., Chen, T., Funkhouser, T.: Structure-aware shape synthesis. In: 3DV, pp. 140–149. IEEE (2018)

    Google Scholar 

  3. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  4. Christ, P.F., et al.: Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint arXiv:1702.05970 (2017)

  5. Dou, Q., Chen, H., Jin, Y., Yu, L., Qin, J., Heng, P.-A.: 3D deeply supervised network for automatic liver segmentation from CT volumes. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 149–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_18

    Chapter  Google Scholar 

  6. Foruzan, A.H., Chen, Y.W.: Improved segmentation of low-contrast lesions using sigmoid edge model. Int. J. Comput. Assist. Radiol. Surg. 11(7), 1267–1283 (2016)

    Article  Google Scholar 

  7. Gadelha, M., Maji, S., Wang, R.: 3D shape induction from 2D views of multiple objects. In: 3DV, pp. 402–411. IEEE (2017)

    Google Scholar 

  8. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29

    Chapter  Google Scholar 

  9. Häme, Y., Pollari, M.: Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Med. image Anal. 16(1), 140–149 (2012)

    Article  Google Scholar 

  10. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  12. Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-specific object reconstruction from a single image. In: CVPR, pp. 1966–1974 (2015)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2014)

    Google Scholar 

  15. Li, G., Chen, X., Shi, F., Zhu, W., Tian, J., Xiang, D.: Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Trans. Image Process. 24(12), 5315–5329 (2015)

    Article  MathSciNet  Google Scholar 

  16. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: ACM Siggraph Computer Graphics, vol. 21, pp. 163–169. ACM (1987)

    Google Scholar 

  17. Lu, F., Wu, F., Hu, P., Peng, Z., Kong, D.: Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 12(2), 171–182 (2017)

    Article  Google Scholar 

  18. Mayo-Smith, W.W., Hara, A.K., Mahesh, M., Sahani, D.V., Pavlicek, W.: How I do it: managing radiation dose in CT. Radiology 273(3), 657–672 (2014)

    Article  Google Scholar 

  19. Mharib, A.M., Ramli, A.R., Mashohor, S., Mahmood, R.B.: Survey on liver CT image segmentation methods. Artif. Intell. Rev. 37(2), 83 (2012)

    Article  Google Scholar 

  20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814 (2010)

    Google Scholar 

  21. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: CVPR, pp. 5648–5656 (2016)

    Google Scholar 

  22. Qin, B., et al.: Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms. Pattern Recogn. 87, 38–54 (2019)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Schertler, T., et al.: Dual-source computed tomography in patients with acute chest pain: feasibility and image quality. Eur. Radiol. 17(12), 3179–3188 (2007)

    Article  Google Scholar 

  25. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20

    Chapter  Google Scholar 

  26. Sioutos, N., de Coronado, S., Haber, M.W., Hartel, F.W., Shaiu, W.L., Wright, L.W.: NCI thesaurus: a semantic model integrating cancer-related clinical and molecular information. J. Biomed. Inf. 40(1), 30–43 (2007)

    Article  Google Scholar 

  27. Vicente, S., Carreira, J., Agapito, L., Batista, J.: Reconstructing PASCAL VOC. In: CVPR, pp. 41–48 (2014)

    Google Scholar 

  28. Wu, J., et al.: Single image 3D interpreter network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 365–382. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_22

    Chapter  Google Scholar 

  29. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)

    Google Scholar 

  30. Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 507–515. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_58

    Chapter  Google Scholar 

  31. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67

    Chapter  Google Scholar 

  32. Zhu, Y., Prummer, S., Wang, P., Chen, T., Comaniciu, D., Ostermeier, M.: Dynamic layer separation for coronary DSA and enhancement in fluoroscopic sequences. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 877–884. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_106

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Daguang Xu for help with anatomical part labelling and discussions; Thomas Funkhouser, Terrence Chen, Kai Ma, and members of the Princeton Graphics and Vision Group for helpful suggestions; Sungheon Gene Kim, Linda Moy, Krzysztof Geras, and Kyunghyun Cho for discussions on medical applications of the proposed method. This work was supported by Siemens Healthcare and NSF-GRFP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Balashova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balashova, E., Wang, J., Singh, V., Georgescu, B., Teixeira, B., Kapoor, A. (2019). 3D Organ Shape Reconstruction from Topogram Images. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics