Skip to main content

Real-Time 2D-3D Deformable Registration with Deep Learning and Application to Lung Radiotherapy Targeting

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Abstract

Radiation therapy presents a need for dynamic tracking of a target tumor volume. Fiducial markers such as implanted gold seeds have been used to gate radiation delivery but the markers are invasive and gating significantly increases treatment time. Pretreatment acquisition of a respiratory correlated 4DCT allows for determination of accurate motion tracking which is useful in treatment planning. We design a patient-specific motion subspace and a deep convolutional neural network to recover anatomical positions from a single fluoroscopic projection in real-time. We use this deep network to approximate the nonlinear inverse of a diffeomorphic deformation composed with radiographic projection. This network recovers subspace coordinates to define the patient-specific deformation of the lungs from a baseline anatomic position. The geometric accuracy of the subspace deformations on real patient data is similar to accuracy attained by original image registration between individual respiratory-phase image volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, M., Joshi, S., Modin, K.: Diffeomorphic density matching by optimal information transport. SIAM J. Imaging Sci. 8(3), 1718–1751 (2015). https://doi.org/10.1137/151006238

    Article  MathSciNet  MATH  Google Scholar 

  2. Foote, M., Sabouri, P., Sawant, A., Joshi, S.: Rank constrained diffeomorphic density motion estimation for respiratory correlated computed tomography. In: Cardoso, M., et al. (eds.) GRAIL/MFCA/MICGen -2017. LNCS, vol. 10551, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_16

    Chapter  Google Scholar 

  3. Geneser, S., Hinkle, J., Kirby, R., Wang, B., Salter, B., Joshi, S.: Quantifying variability in radiation dose due to respiratory-induced tumor motion. Med. Image Anal. 15(4), 640–649 (2011). https://doi.org/10.1016/j.media.2010.07.003

    Article  Google Scholar 

  4. Ha, I.Y., Wilms, M., Handels, H., Heinrich, M.P.: Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions. IEEE Trans. Biomed. Eng. 66(2), 302–310 (2019). https://doi.org/10.1109/TBME.2018.2837387

    Article  Google Scholar 

  5. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE, July 2017. https://doi.org/10.1109/CVPR.2017.243

  6. Keall, P.J., Joshi, S., Vedam, S.S., Siebers, J.V., Kini, V.R., Mohan, R.: Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med. Phys. 32(4), 942–951 (2005). https://doi.org/10.1118/1.1879152

    Article  Google Scholar 

  7. Khesin, B., Lenells, J., Misiołek, G., Preston, S.C.: Geometry of diffeomorphism groups, complete integrability and Geometric statistics. Geom. Funct. Anal. 23(1), 334–366 (2013). https://doi.org/10.1007/s00039-013-0210-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, R., et al.: On a PCA-based lung motion model. Phys. Med. Biol. 56(18), 6009–6030 (2011). https://doi.org/10.1088/0031-9155/56/18/015

    Article  Google Scholar 

  9. Markelj, P., Tomaževič, D., Likar, B., Pernuš, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3), 642–661 (2012). https://doi.org/10.1016/j.media.2010.03.005. https://linkinghub.elsevier.com/retrieve/pii/S1361841510000368

    Article  Google Scholar 

  10. Modin, K.: Generalized hunter-saxton equations, optimal information transport, and factorization of diffeomorphisms. J. Geom. Anal. 25(2), 1306–1334 (2015). https://doi.org/10.1007/s12220-014-9469-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)

    Google Scholar 

  12. Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., Weinberger, K.Q.: Memory-efficient implementation of DenseNets. arXiv preprint http://arxiv.org/abs/1707.06990, July 2017

  13. Preston, J., Hinkle, J., Singh, N., Rottman, C., Joshi, S.: PyCA: python for computational anatomy. https://bitbucket.org/scicompanat/pyca

  14. Rottman, C., Bauer, M., Modin, K., Joshi, S.C.: Weighted diffeomorphic density matching with applications to thoracic image registration. In: 5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA 2015), pp. 1–12 (2015)

    Google Scholar 

  15. Rottman, C., Larson, B., Sabouri, P., Sawant, A., Joshi, S.: Diffeomorphic density registration in thoracic computed tomography. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 46–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_6

    Chapter  Google Scholar 

  16. Rottman, C., McBride, L., Cheryauka, A., Whitaker, R., Joshi, S.: Mobile C-arm 3D reconstruction in the presence of uncertain geometry. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 692–699. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_83

    Chapter  Google Scholar 

  17. Sabouri, P., et al.: A novel method using surface monitoring to capture breathing-induced cycle-to-cycle variations with 4DCT. In: 59th Annual Meeting of the American Association of Physicists in Medicine, Denver, CO (2017). http://www.aapm.org/meetings/2017AM/PRAbs.asp?mid=127&aid=37742

  18. Sawant, A., et al.: Investigating the feasibility of rapid MRI for image-guided motion management in lung cancer radiotherapy. BioMed. Res. Int. 2014 (2014). https://doi.org/10.1155/2014/485067

    Article  Google Scholar 

  19. Sawant, A., et al.: Management of three-dimensional intrafraction motion through real-time DMLC tracking. Med. Phys. 35(5), 2050–2061 (2008). https://doi.org/10.1118/1.2905355

    Article  Google Scholar 

  20. Sherouse, G.W., Novins, K., Chaney, E.L.: Computation of digitally reconstructed radiographs for use in radiotherapy treatment design. Int. J. Radiat. Oncol. Biol. Phys. 18(3), 651–658 (1990). https://doi.org/10.1016/0360-3016(90)90074-T

    Article  Google Scholar 

  21. Staub, D., Murphy, M.J.: A digitally reconstructed radiograph algorithm calculated from first principles. Med. Phys. 40(1) (2013). https://doi.org/10.1118/1.4769413

    Article  Google Scholar 

  22. U.S. Cancer Statistics Working Group: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2014 Incidence and Mortality Web-based Report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Technical report, Centers for Disease Control and Prevention and National Cancer Institute (2017). https://nccd.cdc.gov/uscs/

Download references

Acknowledgements

This work was partially supported through research funding from the National Institute of Health (R01 CA169102 and R03 EB026132). Additional support was provided by internal funding from the Huntsman Cancer Institute. The authors are grateful for the support of NVIDIA Corporation by providing the GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus D. Foote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foote, M.D., Zimmerman, B.E., Sawant, A., Joshi, S.C. (2019). Real-Time 2D-3D Deformable Registration with Deep Learning and Application to Lung Radiotherapy Targeting. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics