Skip to main content

Abstract

There is a temperature gradient investigation of the steel hollow circular column. This dependence was carried out from simulated section in the PC SOFiSTiK and experimental data from the manual. The comparison of the modelling and manual results gives excellent convergence for both unprotected section and with fire protection of cement-sand plaster. The average relative deviation for most of the values does not exceed 5%. Modeling of the temperature gradient in steel structures can be considered validated. Software complex SOFiSTiK can be used to pre-assess the heating of sections of building structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saknite, T., Serdjuks, D., Goremikins, V., Pakrastins, L., Vatin, N.I.: Fire design of arch-type timber roof. Mag. Civ. Eng. 64(4), 26–39 (2016). https://doi.org/10.5862/MCE.64.3

    Article  Google Scholar 

  2. Lazarevska, M., Cvetkovska, M., Knezevic, M., Trombeva Gavriloska, A., Milanovic, M., Murgul, V., Vatin, N.: Neural network prognostic model for predicting the fire resistance of eccentrically loaded RC columns. Appl. Mech. Mater. 627, 276–282 (2014). https://doi.org/10.4028/www.scientific.net/AMM.627.276

    Article  Google Scholar 

  3. EN 1991-1-2:2002 Eurocode 1: Actions on structures. Part 1-2: General actions – Actions on structures exposed to fire

    Google Scholar 

  4. EN 1992-1-2:2004 Eurocode 2: Design of concrete structures. Part 1-2: General rules. Structural fire design

    Google Scholar 

  5. EN 1993-1-2:2009 Eurocode 3: Design of steel structures. Part 1-2. General rules. Structural fire design

    Google Scholar 

  6. EN 1994-1-2:2005 Eurocode 4: Design of composite steel and concrete structures. Part 1-2: General rules - Structural fire design

    Google Scholar 

  7. Lennon, T., Moore, D.B., Wang, Y.C., Bailey, C.G.: Designers’ guides to the Eurocodes. Designers’ guide to EN 1991-1-2, 1992-1-2, 1993-1-2 and 1994-1-2 handbook for the fire design of steel, composite and concrete structures to the Eurocodes. Thomas Telford Ltd, 136 (2007)

    Google Scholar 

  8. Roitman, V.M.: Engineering solutions for assessing the fire resistance of buildings being designed and reconstructed. Association “Fire Safety and Science”, Moscow, Russia, p. 382 (2001)

    Google Scholar 

  9. Twilt, L., et al.: Design guide for structural hollow section columns exposed to fire. Koln Verl. TUV Rheinland (1994). ISBN 3-8249-0171-4

    Google Scholar 

  10. Heinisuo, M., Jokinen, T.: Tubular composite columns in a non-symmetrical fire. Mag. Civ. Eng. 5(49), 107–120 (2014). https://doi.org/10.5862/MCE.49.11

    Article  Google Scholar 

  11. Schaumann, P., Tabeling, F., Weisheim, W.: Numerical simulation of the heating behaviour of steel profiles with intumescent coating adjacent to trapezoidal steel sheets in fire. J. Struct. Fire Eng. 7(2), 158–167 (2016)

    Article  Google Scholar 

  12. Schaumann, P., Bahr, O., Kodur, V.: Numerical studies on HSC-filled steel columns exposed to fire. Tubular Struct. XI, 411–416 (2017). https://doi.org/10.1201/9780203734964-50

    Chapter  Google Scholar 

  13. Hamins, A., Mcgrattan, K., Prasad, K., Maranghides, A., Mcallister, T.: Experiments and modeling of unprotected structural steel elements exposed to a fire. Fire Saf. Sci. 8, 189–200 (2005). https://doi.org/10.3801/IAFSS.FSS.8-189

    Article  Google Scholar 

  14. Tondini, N., Hoang, V.L., Demonceau, J.-F., Franssen, J.-M.: Experimental and numerical investigation of high-strength steel circular columns subjected to fire. J. Constr. Steel Res. 80, 57–81 (2013)

    Article  Google Scholar 

  15. Tondini, N., Demonceau, J.-F.: Numerical analysis of the fire resistance of high‐strength steel circular columns. In: Proceedings of Eurosteel, vol. 1 (2-3), pp. 2563–2571 (2017). https://doi.org/10.1002/cepa.305

    Article  Google Scholar 

  16. Koh, S.K., Mensinger, M., Meyer, P., Schaumann, P.: Fire in hollow spaces: short circuit as ignition sources and the role of ventilation. In: 2nd International Fire Safety Symposium, p. 781. Doppiavoce, Napoli, Italy (2017)

    Google Scholar 

  17. Gravit, M., Lyulikov, V., Fatkullina, A.: Possibilities of modern software complexes in simulation fire protection of constructions structures with Sofistik. In: MATEC Web of Conferences, vol. 193, p. 03026 (2018). https://doi.org/10.1051/matecconf/201819303026

    Article  Google Scholar 

  18. Gravit, M., Gumerova, E., Lulikov, V.: Computer modelling of fire resistant solutions for structures in high-rise buildings with using of new fire-retardant materials. In: SHS Web of Conferences, vol. 44 (2018). https://doi.org/10.1051/shsconf/20184400035

    Article  Google Scholar 

  19. ISO 834-1: Fire resistance tests – elements of building construction. Part 1: general requirements, international organization for standardization ISO 834. Geneva, Switzerland (1999)

    Google Scholar 

  20. Organization standard ADSC 11251254.001-018-03 Design of fire protection of load-bearing steel structures using various types of linings. Association for the Development of Steel Construction. Moscow: Axiom Graphics Union, 72 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Dmitriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gravit, M., Dmitriev, I., Lazarev, Y. (2019). Validation of the Temperature Gradient Simulation in Steel Structures in SOFiSTiK. In: Murgul, V., Pasetti, M. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018 2018. Advances in Intelligent Systems and Computing, vol 983. Springer, Cham. https://doi.org/10.1007/978-3-030-19868-8_92

Download citation

Publish with us

Policies and ethics