Skip to main content

Interpolation and Beth Definability in Default Logics

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11468))

Included in the following conference series:

Abstract

We investigate interpolation and Beth definability in default logics. To this end, we start by defining a general framework which is sufficiently abstract to encompass most of the usual definitions of a default logic. In this framework a default logic \(\mathscr {D}\mathfrak {L}\) is built on a base, monotonic, logic \(\mathfrak {L}\). We then investigate the question of when interpolation and Beth definability results transfer from \(\mathfrak {L}\) to \(\mathscr {D}\mathfrak {L}\). This investigation needs suitable notions of interpolation and Beth definability for default logics. We show both positive and negative general results: depending on how \(\mathscr {D}\mathfrak {L}\) is defined and of the kind of interpolation/Beth definability involved, the property might or might not transfer from \(\mathfrak {L}\) to \(\mathscr {D}\mathfrak {L}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amir, E.: Interpolation theorems for nonmonotonic reasoning systems. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 233–244. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45757-7_20

    Chapter  Google Scholar 

  2. Antoniou, G., Wang, K.: Default logic. In: Gabbay, D., Woods, J. (eds.) The Many Valued and Nonmonotonic Turn in Logic. Handbook of the History of Logic, vol. 8, pp. 517–555. North-Holland (2007)

    Google Scholar 

  3. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation and complexity. J. Symb. Logic 66(3), 977–1010 (2001)

    Article  MathSciNet  Google Scholar 

  4. Areces, C., de Rijke, M.: Interpolation and bisimulation in temporal logic. In: Workshop on Logic, Language, Information and Computation (WoLLIC 1998), pp. 15–21 (1998)

    Google Scholar 

  5. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier (2006)

    Google Scholar 

  6. Bicarregui, J., Dimitrakos, T., Gabbay, D., Maibaum, T.: Interpolation in practical formal development. Logic J. IGPL 9(2), 231–244 (2001)

    Article  MathSciNet  Google Scholar 

  7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  8. Blackburn, P., Marx, M.: Constructive interpolation in hybrid logic. J. Symb. Logic 68(2), 463–480 (2003)

    Article  MathSciNet  Google Scholar 

  9. Cassano, V., Areces, C., Castro, P.: Reasoning about prescription and description using prioritized default rules. In: Barthe, G., Sutcliffe, G., Veanes, M. (eds.) 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-22). EPiC Series in Computing, vol. 57, pp. 196–213. EasyChair (2018)

    Google Scholar 

  10. Chellas, B.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)

    Book  Google Scholar 

  11. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symb. Logic 22, 269–285 (1957)

    Article  MathSciNet  Google Scholar 

  12. Delgrande, J., Schaub, T.: Expressing default logic variants in default logic. J. Logic Comput. 15(5), 593–621 (2005)

    Article  MathSciNet  Google Scholar 

  13. Delgrande, J., Schaub, T., Jackson, W.: Alternative approaches to default logic. Artif. Intell. 70(1–2), 167–237 (1994)

    Article  MathSciNet  Google Scholar 

  14. Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. Papers Presented at the 2nd Annual Workshop on Logical Environments, pp. 83–130. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  15. Enderton, H.: A Mathematical Introduction to Logic, 2nd edn. Academic Press, Cambridge (2001)

    MATH  Google Scholar 

  16. Font, J.: Abstract Algebraic Logic. An Introductory Textbook, 1st edn. College Publications (2016)

    Google Scholar 

  17. Froidevaux, C., Mengin, J.: A framework for default logics. In: Pearce, D., Wagner, G. (eds.) JELIA 1992. LNCS, vol. 633, pp. 154–173. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023427

    Chapter  MATH  Google Scholar 

  18. Froidevaux, C., Mengin, J.: Default logics: a unified view. Comput. Intell. 10, 331–369 (1994)

    Article  Google Scholar 

  19. Gabbay, D., Maksimova, L.: Interpolation and Definability: Modal and Intuitionistic Logic. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  20. Gabbay, D., Pearce, D., Valverde, A.: Interpolable formulas in equilibrium logic and answer set programming. J. Artif. Intell. Res. 42, 917–943 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)

    MATH  Google Scholar 

  22. Hoogland, E.: Definability and Interpolation. Ph.D. thesis, Institute for Logic, Language and Computation Universiteit van Amsterdam (2001)

    Google Scholar 

  23. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-Lite ontologies? In: 11th International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 285–295. AAAI Press (2008)

    Google Scholar 

  24. Łukaszewicz, W.: Considerations on default logic: an alternative approach. Comput. Intell. 4, 1–16 (1988)

    Article  MathSciNet  Google Scholar 

  25. Maibaum, T., Sadler, M.: Axiomatizing specification theory. In: 3rd Workshop on Theory and Applications of ADTs (WADT 1984). Informatik-Fachberichte, vol. 116, pp. 171–177. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  26. McMillan, K.L.: Applications of craig interpolants in model checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_1

    Chapter  Google Scholar 

  27. Mikitiuk, A., Truszczynski, M.: Constrained and rational default logics. In: 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1509–1517 (1995)

    Google Scholar 

  28. Parikh, R.: Beth definability, interpolation and language splitting. Synthese 179(2), 211–221 (2011)

    Article  Google Scholar 

  29. Reiter, R.: A logic for default reasoning. AI 13(1–2), 81–132 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Schaub, T.: On constrained default theories. In: 11th European Conference on Artificial Intelligence (ECAI 1992), pp. 304–308 (1992)

    Google Scholar 

  31. Shoenfield, J.: Mathematical Logic. Addison-Wesley, Boston (1967)

    MATH  Google Scholar 

  32. Suppes, P.: Axiomatic Set Theory. Dover Books on Mathematics. Dover Publications, Mineola (1972)

    Google Scholar 

  33. van Dalen, D.: Logic and structure, 5th edn. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-85108-0

    Book  MATH  Google Scholar 

  34. Veloso, P., Maibaum, T.: On the modularization theorem for logical specifications. Inf. Process. Lett. 53(5), 287–293 (1995)

    Article  Google Scholar 

  35. Von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)

    Article  Google Scholar 

Download references

Ackowledgements

This work was partially supported by ANPCyT-PICTs-2017-1130 and 2016-0215, MinCyT Córdoba, SeCyT-UNC, the Laboratoire International Associé INFINIS and the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 690974 for the project MIREL: MIning and REasoning with Legal texts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Cassano .

Editor information

Editors and Affiliations

A Selected Proofs

A Selected Proofs

Remark 3

Let \(\mathfrak {L}\) be any logic, and \(\varPhi \) and \(\varPsi \) be sets of sentences; we say that \(\varPsi \) is a conservative extension of \(\varPhi \), notation \(\varPsi \ge \varPhi \), iff and .

Lemma 4

Let \(\mathfrak {L}\) be any logic, \(\varPhi \) be a set of sentences defined on an alphabet A, and \(q \notin A\); if consequence in \(\mathfrak {L}\) has \(\mathsf {SIP}\), and .

Proof

Trivially, . In turn, let ; then, , alt., . From \(\mathsf {SIP}\), there is \(\varepsilon \) defined on \(A \setminus \{p\}\) s.t. and . Since , results in . Then, and ; and so, , alt., . Therefore, .

Lemma 1

Any strongly saturated default logic \(\mathscr {D}\mathfrak {L}\) is stable.

Proof

Let \(\Theta \) be a default theory defined on an alphabet A, and and \(q \notin A\). In addition, let \(E \in \mathscr {E}(\Theta )\) be s.t. for some . Since \(\mathscr {D}\mathfrak {L}\) is strongly saturated, \(\varDelta \) is saturated in \(\Theta \). The result follows immediately if is saturated in ; as is our extension. The proof proceeds by contradiction. Let be not saturated in ; w.l.o.g. there is a default s.t. \(\delta \) is detached by . Clearly, or for some . If , from Lemma 4, \(\delta \) is detached by \(\varDelta \); and so \(\varDelta \) is not saturated. This yields a contradiction. If for some , from Lemma 4, is detached by ; and so is not saturated. But by substitution, \(\delta '\) is detached by \(\varDelta \), and so \(\varDelta \) is not saturated. This also yields a contradiction. Thus, is saturated in .

Lemma 2

Let \(\mathscr {D}\mathfrak {L}\) be a default logic; for all default theories \(\Theta \) and all , if \(\varDelta \) is self coherent in \(\Theta \), then, is self coherent in .

Proof

Similar to that of Lemma 1.

Lemma 3

Let be a set of sets of formulas s.t. for all \(i \in I\), and ; if consequence in \(\mathfrak {L}\) has \(\mathsf {SIP}\), \(q \notin A\), and , then .

Proof

(by contradiction). Let us assume that ; by definition, it follows that all (\(*\)) . At the same time, let ; then, for all \(\xi \) defined on \({A \setminus \{p\}}\), either (\(\dagger \)) or (\(\ddagger \)) . From (\(\dagger \)), there is ; and from Lemma 4, (\(\S \)) . But (\(\S \)) leads to a contradiction; since from (\(*\)) , by \(\mathsf {SIP}\), there is in fact \(\xi \) defined on \(A \setminus \{p\}\) s.t. ! Similarly, we obtain a contradiction from (\(\ddagger \)). Thus, .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cassano, V., Fervari, R., Areces, C., Castro, P.F. (2019). Interpolation and Beth Definability in Default Logics. In: Calimeri, F., Leone, N., Manna, M. (eds) Logics in Artificial Intelligence. JELIA 2019. Lecture Notes in Computer Science(), vol 11468. Springer, Cham. https://doi.org/10.1007/978-3-030-19570-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19570-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19569-4

  • Online ISBN: 978-3-030-19570-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics