Skip to main content

Designated-Verifier Pseudorandom Generators, and Their Applications

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2019 (EUROCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11477))

Abstract

We provide a generic construction of non-interactive zero-knowledge (NIZK) schemes. Our construction is a refinement of Dwork and Naor’s (FOCS 2000) implementation of the hidden bits model using verifiable pseudorandom generators (VPRGs). Our refinement simplifies their construction and relaxes the necessary assumptions considerably.

As a result of this conceptual improvement, we obtain interesting new instantiations:

  • A designated-verifier NIZK (with unbounded soundness) based on the computational Diffie-Hellman (CDH) problem. If a pairing is available, this NIZK becomes publicly verifiable. This constitutes the first fully secure CDH-based designated-verifier NIZKs (and more generally, the first fully secure designated-verifier NIZK from a non-generic assumption which does not already imply publicly-verifiable NIZKs), and it answers an open problem recently raised by Kim and Wu (CRYPTO 2018).

  • A NIZK based on the learning with errors (LWE) assumption, and assuming a non-interactive witness-indistinguishable (NIWI) proof system for bounded distance decoding (BDD). This simplifies and improves upon a recent NIZK from LWE that assumes a NIZK for BDD (Rothblum et al., PKC 2019).

G. Couteau—Supported by ERC grant “PREP-CRYPTO” (724307).

D. Hofheinz—Supported by ERC grant “PREP-CRYPTO” (724307) and DFG project GZ HO 4304/4-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the HBM, there exist unconditionally secure \(\textsf {NIZK}\) proofs [17].

  2. 2.

    A formal argument requires a little care in choosing parameters, and in randomizing \(\mathsf {hb} \) with an additional component in the \(\textsf {NIZK}\) common reference string.

  3. 3.

    One might wonder why we do not follow another route to obtain VPRGs from NIWI proofs for \(\mathsf {BDD}\). Specifically, [3, 23] construct even verifiable random functions from a NIWI for a (complex) LWE-related language. However, these constructions inherently use disjunctions, and it seems unlikely that the corresponding NIWIs can be reduced to the \(\mathsf {BDD}\) language.

  4. 4.

    The actual construction of [37] relies on a new notion of public-key encryption with prover-assisted oblivious ciphertext sampling, but the high level idea is comparable to the \(\mathsf {VPRG}\)-based approach. A side contribution of our construction is that it is conceptually much simpler and straightforward than the construction of [37].

  5. 5.

    Since n is the order of \(\mathbb {G}\) and \(\mathbb {G}\) is a group in which CDH is assumed to hold, 2 / n is negligible in the security parameter.

  6. 6.

    Strictly speaking, this may not be true, depending on \(G_m\): the LWE parameters may depend on the size of the \(G_{m,i}\), which in turn may depend on \(m\). However, here we implicitly assume that \(m\le 2^\lambda \) and a suitable \(G_m\) (e.g., one in which \(G_{m,i}(s)\) is of the form \(F_s(i)\) for a PRF \(F:\{0,1\} ^\lambda \rightarrow \{0,1\} \)).

References

  1. Abusalah, H.: Generic instantiations of the hidden bits model for non-interactive zero-knowledge proofs for NP. Master’s thesis, RWTH Aachen (2013)

    Google Scholar 

  2. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. Part II. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_6

    Chapter  Google Scholar 

  3. Bitansky, N.: Verifiable random functions from non-interactive witness-indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. Part II. LNCS, vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_19

    Chapter  Google Scholar 

  4. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_16

    Chapter  MATH  Google Scholar 

  5. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May 1988

    Google Scholar 

  6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 896–912. ACM Press, October 2018

    Google Scholar 

  7. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_4

    Chapter  Google Scholar 

  8. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

    Chapter  Google Scholar 

  9. Canetti, R., Lichtenberg, A.: Certifying trapdoor permutations, revisited. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. Part I. LNCS, vol. 11239, pp. 476–506. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_18

    Chapter  Google Scholar 

  10. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_8

    Chapter  Google Scholar 

  11. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. Part III. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_7

    Chapter  Google Scholar 

  12. Couteau, G., Hofheinz, D.: Designated-verifier pseudorandom generators, and their applications. Cryptology ePrint Archive (2019)

    Google Scholar 

  13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  14. Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_37

    Chapter  Google Scholar 

  15. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with preprocessing. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 269–282. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_21

    Chapter  Google Scholar 

  16. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293. IEEE Computer Society Press, November 2000

    Google Scholar 

  17. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317. IEEE Computer Society Press, October 1990

    Google Scholar 

  18. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM STOC, pp. 25–32. ACM Press, May 1989

    Google Scholar 

  19. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: 27th FOCS, pp. 174–187. IEEE Computer Society Press, October 1986

    Google Scholar 

  20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  21. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 228–245. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_16

    Chapter  Google Scholar 

  22. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 469–477. ACM Press, June 2015

    Google Scholar 

  23. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. Part II. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_18

    Chapter  Google Scholar 

  24. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6

    Chapter  Google Scholar 

  25. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21

    Chapter  Google Scholar 

  26. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  27. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated verifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Eurocrypt 2019 (2019)

    Google Scholar 

  28. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for NP with general assumptions. J. Cryptol. 11(1), 1–27 (1998)

    Article  MathSciNet  Google Scholar 

  29. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. Part II. LNCS, vol. 10992, pp. 733–765. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_25

    Chapter  Google Scholar 

  30. Ong, S.J., Vadhan, S.P.: Zero knowledge and soundness are symmetric. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 187–209. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_11

    Chapter  Google Scholar 

  31. Oren, Y.: On the cunning power of cheating verifiers: some observations about zero knowledge proofs (extended abstract). In: 28th FOCS, pp. 462–471. IEEE Computer Society Press, October 1987

    Google Scholar 

  32. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero-knowledge. In: 1993 Proceedings of the 2nd Israel Symposium on the Theory and Computing Systems, pp. 3–17. IEEE (1993)

    Google Scholar 

  33. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryption scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_16

    Chapter  Google Scholar 

  34. Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 536–553. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_30

    Chapter  Google Scholar 

  35. Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier NIZKs forall NP from CDH. In: Eurocrypt 2019 (2019)

    Google Scholar 

  36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005

    Google Scholar 

  37. Rothblum, R.D., Sealfon, A., Sotiraki, K.: Towards non-interactive zero-knowledge for NP from LWE. In: PKC 2019 (2019)

    Google Scholar 

  38. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press, May/June 2014

    Google Scholar 

  39. Vadhan, S.P.: An unconditional study of computational zero knowledge. In: 45th FOCS, pp. 176–185. IEEE Computer Society Press, October 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffroy Couteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Couteau, G., Hofheinz, D. (2019). Designated-Verifier Pseudorandom Generators, and Their Applications. In: Ishai, Y., Rijmen, V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science(), vol 11477. Springer, Cham. https://doi.org/10.1007/978-3-030-17656-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17656-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17655-6

  • Online ISBN: 978-3-030-17656-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics