Skip to main content

Thymus vulgaris L. (Lamiaceae)

(Syns.: T. chinensis K. Koch; T. ilerdensis González ex Costa; T. sublaxus Rouy)

  • Chapter
  • First Online:
Handbook of 200 Medicinal Plants

Abstract

Thymus vulgaris is a bushy, evergreen subshrub, that was known to ancient Egyptians, Greeks and Romans. It was used for embalming by Egyptians, used in baths by Greeks, and Romans purified their rooms with it. It was also used as incense by the Greeks and placed in coffins to assure passage into the next life. In Unani medicine, aerial parts are regarded analgesic, anti-inflammatory, expectorant, digestive, carminative, emmenagogue, anthelmintic, lithotriptic, diuretic, aphrodisiac, and to improve digestion and appetite. As a nervine tonic, it is used in the treatment of epilepsy, and also used in dyspnea and asthma, diarrhea, dyspepsia with flatulence, gonorrhea, leucorrhea, and visceral catarrh. It is also an anesthetic, and irritant to skin and mucous membranes. Thyme oil is used as a disinfectant and antiseptic, probably due to its phenolic content; and for scenting soaps, making perfumes, and as a flavoring agent for food. Aerial parts contain volatile oil, flavonoids, sterols/triterpenes, tannins, anthraquinones, and cyanogenic glycosides. Most important constituent of the plant is the EO which is used for many purposes. It contains thymol, carvacrol, p-cymene, α-pinene, terpineol, v-terpinene, geraniol, linalool and traces of cineole. Thymus vulgaris and its volatile extracts possess high antioxidant activity and rosmarinic acid is identified as the predominant phenolic compound. Both thymol and carvacrol have also been suggested being responsible for the antioxidant activity; while others attributed the antioxidative action to labiate acid and rosmarinic acid. Aqueous extract showed high antiviral activity against HSV-1, HSV-2 and an acyclovir-resistant strain of HSV-1. Thyme extract significantly reduces production and gene expression of proinflammatory mediators, TNF-α, IL-1B, and IL-6, and carvacrol is reported to activate PPARα and PPARγ and suppresses COX-2 expression, and inhibits AChE . Thymol is suggested to potentiate GABAA receptors through an allosteric binding site. Thymol also acts as agonist on α1, α2 and β-adrenergic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aazza S, Lyoussi B, Miguel MG. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules. 2011;16:7672–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abu-Darwish MS, Al-Ramamneh EA, Kyslychenko VS, Karpiuk UV. The antimicrobial activity of essential oils and extracts of some medicinal plants grown in Ash-shoubak region—south of Jordan. Pak J Pharm Sci. 2012;25:239–46.

    PubMed  Google Scholar 

  3. Abu-Darwish MS, Alu’datt MH, Al-Tawaha AR, et al. Seasonal variation in essential oil yield and composition from Thymus vulgaris L. during different growth stages in the south of Jordan. Nat Prod Res. 2012;26:1310–7.

    Google Scholar 

  4. Adzet T, Granger R, Passet J, San Martin R. Chemical polymorphism in the genus Thymus: taxonomic importance. Biochem Syst Ecol. 1977;5:269.

    CAS  Google Scholar 

  5. Adzet T, Martinez-Verges F. Flavonoids in the leaves of Thymus: a chemotaxonomic survey. Biochem Syst Ecol. 1981;9:293.

    CAS  Google Scholar 

  6. Adzet T, Martinez-Verges F. Luteolin and 6-hydroxyluteolin: taxonomically important flavones in the genus Thymus. Planta Med. 1980;(Suppl.):52.

    Google Scholar 

  7. Agbor GA, Oben JE, Ngogang JY, et al. Antioxidant capacity of some herbs/spices from cameroon: a comparative study of two methods. J Agric Food Chem. 2005;53:6819–24.

    CAS  PubMed  Google Scholar 

  8. Agnihotri S, Vaidya AD. A novel approach to study antibacterial properties of volatile components of selected Indian medicinal herbs. Indian J Exp Biol. 1996;34:712–5.

    CAS  PubMed  Google Scholar 

  9. Albasini A, Bianchi A, Melegari M, et al. Studies of plants of the genus Thymus. Atti Soc Nat Mat Modena. 1984;115:1.

    CAS  Google Scholar 

  10. Al-Bayati FA. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J Ethnopharmacol. 2008;116:403–6.

    CAS  PubMed  Google Scholar 

  11. Alexa E, Sumalan RM, Danciu C, et al. Synergistic antifungal, allelopatic and antiproliferative potential of Salvia officinalis L., and Thymus vulgaris L. essential oils. Molecules. 2018;23. pii: E185.

    Google Scholar 

  12. Alinkina ES, Misharina TA, Fatkullina LD. Antiradical properties of oregano, thyme, and savory essential oils. Prikl Biokhim Mikrobiol. 2013;49:82–7 (Russian).

    Google Scholar 

  13. Alonso WR, Croteau R. Purification and characterization of the monoterpene cyclase gamma-terpinene synthase from Thymus vulgaris. Arch Biochem Biophys. 1991;286:511–7.

    CAS  PubMed  Google Scholar 

  14. Al-Yahya MA, Tariq M, Al-Meshal IA, Mossa JS. Phytochemical and pharmacological studies on Thymus vulgaris Linn. In: Proceedings of International Symposium on Chinese Medicine and Materials Research, Hong Kong, 48; 1984.

    Google Scholar 

  15. Asbaghian S, Shafaghat A, Zarea K, et al. Comparison of volatile constituents, and antioxidant and antibacterial activities of the essential oils of Thymus caucasicus, T. kotschyanus and T. vulgaris. Nat Prod Commun. 2011;6:137–40.

    Google Scholar 

  16. Aynehchi Y, Sormaghi MHS, Amin GH, et al. Survey of Iranian plants for saponins, alkaloids, flavonoids and tannins. II. Int J Crude Drug Res. 1982;20:61.

    CAS  Google Scholar 

  17. Babaei M, Abarghoei ME, Ansari R, et al. Antispasmodic effect of hydroalcoholic extract of Thymus vulgaris on the guinea pig ileum. Nat Prod Res. 2008;22:1143–50.

    CAS  PubMed  Google Scholar 

  18. Beer AM, Lukanov J, Sagorchev P. Effect of Thymol on the spontaneous contractile activity of the smooth muscles. Phytomedicine. 2007;14:65–9.

    CAS  PubMed  Google Scholar 

  19. Behnia M, Haghighi A, Komeylizadeh H, et al. Inhibitory effects of Iranian Thymus vulgaris extracts on in vitro growth of Entamoeba histolytica. Korean J Parasitol. 2008;46:153–6.

    PubMed  PubMed Central  Google Scholar 

  20. Benourad F, Kahvecioglu Z, Youcef-Benkada M, Colet JM. Prospective evaluation of potential toxicity of repeated doses of Thymus vulgaris L. extracts in rats by means of clinical chemistry, histopathology and NMR-based metabonomic approach. Drug Test Anal. 2014;6:1069–75.

    Google Scholar 

  21. Bogavac M, Karaman M, Janjušević L, et al. Alternative treatment of vaginal infections—in vitro antimicrobial and toxic effects of Coriandrum sativum L. and Thymus vulgaris L. essential oils. J Appl Microbiol. 2015;119:697–710.

    Google Scholar 

  22. Bonjar GH. Inhibition of Clotrimazole-resistant Candida albicans by plants used in Iranian folkloric medicine. Fitoterapia. 2004;75:74–6.

    PubMed  Google Scholar 

  23. Borugă O, Jianu C, Mişcă C, et al. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J Med Life. 2014;7(Spec No. 3):56–60.

    Google Scholar 

  24. Boskabady MH, Aslani MR, Kiani S. Relaxant effect of Thymus vulgaris on guinea pig tracheal chains and its possible mechanism(s). Phytother Res. 2006;20:28–33.

    CAS  PubMed  Google Scholar 

  25. Bozin B, Mimica-Dukic N, Simin N, Anackov G. Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem. 2006;54:1822–8.

    CAS  PubMed  Google Scholar 

  26. Braga PC, Sasso MD, Culici M, Alfieri M. Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia. 2007;78:396–400.

    CAS  PubMed  Google Scholar 

  27. Cavalcante Melo FH, Rios ER, Rocha NF, et al. Antinociceptive activity of carvacrol (5-isopropyl-2-methylphenol) in mice. J Pharm Pharmacol. 2012;64:1722–9.

    PubMed  Google Scholar 

  28. Centeno S, Calvo MA, Adelantado C, Figueroa S. Antifungal activity of extracts of Rosmarinus officinalis and Thymus vulgaris against Aspergillus flavus and A. ochraceus. Pak J Biol Sci. 2010;13:452–5.

    Google Scholar 

  29. Chizzola R, Michitsch H, Franz C. Antioxidative properties of Thymus vulgaris leaves: comparison of different extracts and essential oil chemotypes. J Agric Food Chem. 2008;56:6897–904.

    CAS  PubMed  Google Scholar 

  30. Chun H, Shin DH, Hong BS, et al. Purification and biological activity of acidic polysaccharide from leaves of Thymus vulgaris L. Biol Pharm Bull. 2001;24:941–6.

    CAS  PubMed  Google Scholar 

  31. Dapkevicius A, van Beek TA, Lelyveld GP, et al. Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves. J Nat Prod. 2002;65:892–6.

    CAS  PubMed  Google Scholar 

  32. de Carvalho RJ, de Souza GT, Honório VG, et al. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter coculture in cheese-mimicking models. Food Microbiol. 2015;52:59–65.

    Google Scholar 

  33. de Lira Mota KS, de Oliveira Pereira F, de Oliveira WA, et al. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol. Molecules. 2012;17:14418–33.

    Google Scholar 

  34. Díaz-Maroto MC, Díaz-Maroto Hidalgo IJ, Sánchez-Palomo E, Pérez-Coello MS. Volatile components and key odorants of fennel (Foeniculum vulgare Mill.) and thyme (Thymus vulgaris L.) oil extracts obtained by simultaneous distillation-extraction and supercritical fluid extraction. J Agric Food Chem. 2005;53:5385–9.

    Google Scholar 

  35. Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308–16.

    CAS  PubMed  Google Scholar 

  36. El-Nekeety AA, Mohamed SR, Hathout AS, et al. Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon. 2011;57:984–91.

    CAS  PubMed  Google Scholar 

  37. El-Newary SA, Shaffie NM, Omer EA. The protection of Thymus vulgaris leaves alcoholic extract against hepatotoxicity of alcohol in rats. Asian Pac J Trop Med. 2017;10:361–71.

    CAS  PubMed  Google Scholar 

  38. Engelbertz J, Schwenk T, Kinzinger U, et al. Thyme extract, but not thymol, inhibits endothelin-induced contractions of isolated rat trachea. Planta Med. 2008;74:1436–40.

    CAS  PubMed  Google Scholar 

  39. Eraky MA, El-Fakahany AF, El-Sayed NM, Abou-Ouf EA, Yaseen DI. Effects of Thymus vulgaris ethanolic extract on chronic toxoplasmosis in a mouse model. Parasitol Res. 2016;115:2863–71.

    PubMed  Google Scholar 

  40. Esmaeili D, Mobarez AM, Tohidpour A. Anti-Helicobacter pylori activities of shoya powder and essential oils of Thymus vulgaris and Eucalyptus globulus. Open Microbiol J. 2012;6:65–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Essawi T, Srour M. Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol. 2000;70:343–9.

    CAS  PubMed  Google Scholar 

  42. Fachini-Queiroz FC, Kummer R, Estevão-Silva CF, et al. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid Based Complement Alternat Med. 2012;2012:657026.

    Google Scholar 

  43. Fani M, Kohanteb J. In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. J Evid Based Complementary Altern Med. 2017;22:660–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fournomiti M, Kimbaris A, Mantzourani I, et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb Ecol Health Dis. 2015;26:23289.

    PubMed  Google Scholar 

  45. Fujita M, Shiota S, Kuroda T, et al. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol. 2005;49:391–6.

    CAS  PubMed  Google Scholar 

  46. Gerhardt U, Schroeter A. Rosmarinic acid—a naturally occurring antioxidant in spices. Fleischwirtschaft. 1983;63:1628.

    CAS  Google Scholar 

  47. Gerhardt U, Windmueller R. Polarography in the determination of ascorbic acid in seasonings. Fleischwirtschaft. 1981;61:1389.

    CAS  Google Scholar 

  48. Gerhardt U, Wolff M. Examining the essential oil content of new species of thyme for their suitability in meat product manufacture. Fleischwirtschaft. 1976;56:1305.

    CAS  Google Scholar 

  49. Giordani R, Regli P, Kaloustian J, et al. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother Res. 2004;18:990–5.

    Google Scholar 

  50. Golec M, Skórska C, Mackiewicz B, Dutkiewicz J. Health effects of exposure to thyme dust in a group of thyme growing farmers. Ann Univ Mariae Curie Sklodowska [Med]. 2003;58:195–203.

    Google Scholar 

  51. Golec M, Skórska C, Mackiewicz B, et al. Respiratory effects of exposure to dust from herbs. Ann Agric Environ Med. 2005;12:5–10.

    PubMed  Google Scholar 

  52. Granger R, Passet J. Thymus vulgaris native of France. Chemical varieties and chemotaxonomy. Phytochemistry. 1973;12:1683.

    CAS  Google Scholar 

  53. Grosso C, Figueiredo AC, Burillo J, et al. Composition and antioxidant activity of Thymus vulgaris volatiles: comparison between supercritical fluid extraction and hydrodistillation. J Sep Sci. 2010;33:2211–8.

    CAS  PubMed  Google Scholar 

  54. Hammad M, Sallal AK, Darmani H. Inhibition of Streptococcus mutans adhesion to buccal epithelial cells by an aqueous extract of Thymus vulgaris. Int J Dent Hyg. 2007;5:232–5.

    CAS  PubMed  Google Scholar 

  55. Haraguchi H, Saito T, Ishikawa H, et al. Antiperoxidative components in Thymus vulgaris. Planta Med. 1996;62:217–21.

    CAS  PubMed  Google Scholar 

  56. Haroun EM, Mahmoud OM, Adam SE. Effect of feeding Cuminum cyminum fruits, Thymus vulgaris leaves or their mixture to rats. Vet Hum Toxicol. 2002;44:67–9.

    CAS  PubMed  Google Scholar 

  57. Hersch-Martínez P, Leaños-Miranda BE, Solórzano-Santos F. Antibacterial effects of commercial essential oils over locally prevalent pathogenic strains in Mexico. Fitoterapia. 2005;76:453–7.

    PubMed  Google Scholar 

  58. Hitokoto H, Morozumi S, Wauke T, et al. Inhibitory effects of spices on growth and toxin production of toxigenic fungi. Appl Environ Microbiol. 1980;39:818–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Horváthová E, Srančíková A, Regendová-Sedláčková E, et al. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress. Mutagenesis. 2016;31:51–9.

    PubMed  Google Scholar 

  60. Hossain MA, AL-Raqmi KA, AL-Mijizy ZH, Weli AM, Al-Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed. 2013;3:705–10.

    Google Scholar 

  61. Hotta M, Nakata R, Katsukawa M, et al. Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. J Lipid Res. 2010;51:132–9.

    PubMed  PubMed Central  Google Scholar 

  62. Jukic M, Politeo O, Maksimovic M, et al. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother Res. 2007;21:259–61.

    CAS  PubMed  Google Scholar 

  63. Khan MS, Ahmad I, Cameotra SS. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp. Braz J Microbiol. 2014;45:523–31.

    PubMed  PubMed Central  Google Scholar 

  64. Kitajima J, Ishikawa T, Urabe A, Satoh M. Monoterpenoids and their glycosides from the leaf of thyme. Phytochemistry. 2004;65:3279–87.

    CAS  PubMed  Google Scholar 

  65. Kitajima J, Ishikawa T, Urabe A. A new hydroxyjasmone glucoside and its related compounds from the leaf of thyme. Chem Pharm Bull (Tokyo). 2004;52:1013–4.

    CAS  Google Scholar 

  66. Koch C, Reichling J, Schneele J, Schnitzler P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine. 2008;15:71–8.

    CAS  PubMed  Google Scholar 

  67. Kohiyama CY, Yamamoto Ribeiro MM, Mossini SA, et al. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link. Food Chem. 2015;173:1006–10.

    Google Scholar 

  68. Kulisić T, Krisko A, Dragović-Uzelac V, et al. The effects of essential oils and aqueous tea infusions of oregano (Origanum vulgare L. spp. hirtum), thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) on the copper-induced oxidation of human low-density lipoproteins. Int J Food Sci Nutr. 2007;58:87–93.

    Google Scholar 

  69. Lall N, Meyer JJ. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants. J Ethnopharmacol. 1999;66:347–54.

    CAS  PubMed  Google Scholar 

  70. Lamy J. Thyme breeding in the Drome region (France). Cosmet Aromes. 1983;51:73.

    CAS  Google Scholar 

  71. Lee KG, Shibamoto T. Determination of antioxidant potential of volatile extracts isolated from various herbs and spices. J Agric Food Chem. 2002;50:4947–52.

    CAS  PubMed  Google Scholar 

  72. Lim WC, Seo JM, Lee CI, et al. Stimulative and sedative effects of essential oils upon inhalation in mice. Arch Pharm Res. 2005;28:770–4.

    CAS  PubMed  Google Scholar 

  73. López P, Sanchez C, Batlle R, Nerín C. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J Agric Food Chem. 2007;55:4348–56.

    PubMed  Google Scholar 

  74. Mahboubi A, Kamalinejad M, Ayatollahi AM, Babaeian M. Total phenolic content and antibacterial activity of five plants of Labiatae against four food borne and some other bacteria. Iran J Pharm Res. 2014;13:559–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mancini E, Senatore F, Del Monte D, et al. Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules. 2015;20:12016–28.

    Google Scholar 

  76. Marino M, Bersani C, Comi G. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. J Food Prot. 1999;62:1017–23.

    Google Scholar 

  77. Meister A, Bernhardt G, Christoffel V, Buschauer A. Antispasmodic activity of Thymus vulgaris extract on the isolated guinea pig trachea: discrimination between drug and ethanol effects. Planta Med. 1999;65:512–6.

    CAS  PubMed  Google Scholar 

  78. Mohsenzadeh M. Evaluation of antibacterial activity of selected Iranian essential oils against Staphylococcus aureus and Escherichia coli in nutrient broth medium. Pak J Biol Sci. 2007;10:3693–7.

    PubMed  Google Scholar 

  79. Morimitsu Y, Yoshida K, Esaki S, Hirota A. Protein glycation inhibitors from thyme (Thymus vulgaris). Biosci Biotechnol Biochem. 1995;59:2018–21.

    CAS  PubMed  Google Scholar 

  80. Naemura A, Ura M, Yamashita T, et al. Long-term intake of rosemary and common thyme herbs inhibits experimental thrombosis without prolongation of bleeding time. Thromb Res. 2008;122:517–22.

    CAS  PubMed  Google Scholar 

  81. Nguefack J, Budde BB, Jakobsen M. Five essential oils from aromatic plants of Cameroon: their antibacterial activity and ability to permeabilize the cytoplasmic membrane of Listeria innocua examined by flow cytometry. Lett Appl Microbiol. 2004;39:395–400.

    CAS  PubMed  Google Scholar 

  82. Nolkemper S, Reichling J, Stintzing FC, et al. Antiviral effect of aqueous extracts from species of the Lamiaceae family against Herpes simplex virus type 1 and type 2 in vitro. Planta Med. 2006;72:1378–82.

    CAS  PubMed  Google Scholar 

  83. Ocaña A, Reglero G. Effects of thyme extract oils (from Thymus vulgarisThymus zygis, and Thymus hyemalis) on cytokine production and gene expression of oxLDL-stimulated THP-1-macrophages. J Obes. 2012;2012:104706.

    PubMed  PubMed Central  Google Scholar 

  84. Okazaki K, Kawazoe K, Takaishi Y. Human platelet aggregation inhibitors from thyme (Thymus vulgaris L.). Phytother Res. 2002;16:398–9.

    Google Scholar 

  85. Panizzi L, Flamini G, Cioni PL, Morelli I. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. J Ethnopharmacol. 1993;39:167–70.

    CAS  PubMed  Google Scholar 

  86. Park BS, Choi WS, Kim JH, et al. Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J Am Mosq Control Assoc. 2005;21:80–3.

    CAS  PubMed  Google Scholar 

  87. Passet J: Chemical differentiation of oil of thyme, its properties and significance. Dragoco Rep (Ger. Fragrance Ed.). 1980;27:234.

    Google Scholar 

  88. Passet J. Chemical variability within thyme, its manifestations and its significance. Parfums Cosmet Aromes. 1979;28:39.

    CAS  Google Scholar 

  89. Pellecuer J, Jacob M, Simeon de Buochberg M, et al. Tests on the use of the essential oils of Mediterranean aromatic plants in conservative odontology. Plant Med Phytother. 1980;14:83.

    Google Scholar 

  90. Pina-Vaz C, Gonçalves Rodrigues A, Pinto E, et al. Antifungal activity of thymus oils and their major compounds. J Eur Acad Dermatol Venereol. 2004;18:73–8.

    CAS  PubMed  Google Scholar 

  91. Pozzatti P, Scheid LA, Spader TB, et al. In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp. Can J Microbiol. 2008;54:950–6.

    CAS  PubMed  Google Scholar 

  92. Priestley CM, Williamson EM, Wafford KA, Sattelle DB. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol. 2003;140:1363–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Proestos C, Chorianopoulos N, Nychas GJ, Komaitis M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J Agric Food Chem. 2005;53:1190–5.

    Google Scholar 

  94. Ramkissoon J, Mahomoodally M, Ahmed N, Subratty A. Antioxidant and antiglycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac J Trop Med. 2013;6:561–9.

    CAS  PubMed  Google Scholar 

  95. Rana P, Soni G. Antioxidant potential of thyme extract: alleviation of N-nitrosodiethylamine-induced oxidative stress. Hum Exp Toxicol. 2008;27:215–21.

    CAS  PubMed  Google Scholar 

  96. Sasaki K, Wada K, Tanaka Y, et al.: Thyme (Thymus vulgaris L.) leaves and its constituents increase the activities of xenobiotic-metabolizing enzymes in mouse liver. J Med Food. 2005;8:184–9.

    Google Scholar 

  97. Satyal P, Murray BL, McFeeters RL, Setzer WN. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods. 2016;5. pii: E70.

    Google Scholar 

  98. Schmidt E, Wanner J, Hiiferl M, et al. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France. Nat Prod Commun. 2012;7:1095–8.

    CAS  PubMed  Google Scholar 

  99. Schnitzler P, Koch C, Reichling J. Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrob Agents Chemother. 2007;51:1859–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schratz E, Hoerster H. Composition of essential oils of Thymus vulgaris and Thymus marschallianus in relation to leaf age and season of the year. Planta Med. 1970;19:160.

    CAS  PubMed  Google Scholar 

  101. Segvić Klarić M, Kosalec I, Mastelić J, et al. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett Appl Microbiol. 2007;44:36–42.

    Google Scholar 

  102. Sfeir J, Lefrançois C, Baudoux D, et al. In vitro antibacterial activity of essential oils against Streptococcus pyogenes. Evid Based Complement Alternat Med. 2013;2013:269161.

    PubMed  PubMed Central  Google Scholar 

  103. Sharifzadeh A, Jebeli Javan A, Shokri H, Abbaszadeh S, Keykhosravy K. Evaluation of antioxidant and antifungal properties of the traditional plants against foodborne fungal pathogens. J Mycol Med. 2016;26:e11–7.

    CAS  PubMed  Google Scholar 

  104. Sienkiewicz M, Łysakowska M, Ciećwierz J, et al. Antibacterial activity of thyme and lavender essential oils. Med Chem. 2011;7:674–89.

    CAS  PubMed  Google Scholar 

  105. Sienkiewicz M, Łysakowska M, Denys P, Kowalczyk E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb Drug Resist. 2012;18:137–48.

    PubMed  Google Scholar 

  106. Simeon de Bouchberg M, Allegrini J, Bessiere C, et al. Microbiological properties of essential oils of Thymus vulgaris Linneaus Chemotypes. Riv Ital Essenze Profumi Piante Off, Aromi, Saponi, Cosmet Aerosol. 1976;58:527.

    Google Scholar 

  107. Simonyan AV, Shinkarenko AL, Litvinenko VI. Flavonoid glycosides of some species of thyme cultivated in the Caucasus. Rast Resur. 1973;9:395.

    CAS  Google Scholar 

  108. Soković M, Glamoclija J, Cirić A, et al. Antifungal activity of the essential oil of Thymus vulgaris L. and thymol on experimentally induced dermatomycoses. Drug Dev Ind Pharm. 2008;34:1388–93.

    Google Scholar 

  109. Soković M, Glamočlija J, Marin PD, et al. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules. 2010;15:7532–46.

    PubMed  PubMed Central  Google Scholar 

  110. Soković MD, Vukojević J, Marin PD, et al. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14:238–49.

    PubMed  PubMed Central  Google Scholar 

  111. Soliman KM, Badeaa RI. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol. 2002;40:1669–75.

    CAS  PubMed  Google Scholar 

  112. Spiewak R, Skorska C, Dutkiewicz J. Occupational airborne contact dermatitis caused by thyme dust. Contact Dermatitis. 2001;44:235–9.

    CAS  PubMed  Google Scholar 

  113. Taherian AA, Babaei M, Vafaei AA, et al. Antinociceptive effects of hydroalcoholic extract of Thymus vulgaris. Pak J Pharm Sci. 2009;22:83–9.

    CAS  PubMed  Google Scholar 

  114. Takeuchi H, Lu ZG, Fujita T. New monoterpene glucoside from the aerial parts of thyme (Thymus vulgaris L.). Biosci Biotechnol Biochem. 2004;68:1131–4.

    Google Scholar 

  115. Tohidpour A, Sattari M, Omidbaigi R, et al. Antibacterial effect of essential oils from two medicinal plants against methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine. 2010;17:142–5.

    CAS  PubMed  Google Scholar 

  116. Tsai ML, Lin CC, Lin WC, Yang CH. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs. Biosci Biotechnol Biochem. 2011;75:1977–83.

    CAS  PubMed  Google Scholar 

  117. Tullio V, Mandras N, Allizond V, et al. Positive interaction of thyme (red) essential oil with human polymorphonuclear granulocytes in eradicating intracellular Candida albicans. Planta Med. 2012;78:1633–5.

    CAS  PubMed  Google Scholar 

  118. Van den Broucke CO, Lemli JA. Spasmolytic activity of the flavonoids from Thymus vulgaris. Pharm Weekbl, Sci Ed. 1983;5:9–14.

    Google Scholar 

  119. Van den Broucke CO. New pharmacologically important flavonoids of Thymus vulgaris. World Crops: Prod Util Descr. 1982;7:271.

    Google Scholar 

  120. van Vuuren SF, Suliman S, Viljoen AM. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol. 2009;48:440–6.

    PubMed  Google Scholar 

  121. Vetvicka V, Vetvickova J. Essential oils from thyme (Thymus vulgaris): chemical composition and biological effects in mouse model. J Med Food. 2016;19:1180–7.

    CAS  PubMed  Google Scholar 

  122. Wang M, Kikuzaki H, Lin CC, et al. Acetophenone glycosides from thyme (Thymus vulgaris L.). J Agric Food Chem.1999;47:1911–4.

    Google Scholar 

  123. Youdim KA, Deans SG. Dietary supplementation of thyme (Thymus vulgaris L.) essential oil during the lifetime of the rat: its effects on the antioxidant status in liver, kidney and heart tissues. Mech Ageing Dev. 1999;109:163–75.

    Google Scholar 

  124. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem. 2001;49:5165–70.

    CAS  PubMed  Google Scholar 

  125. Zu Y, Yu H, Liang L, et al. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules. 2010;15:3200–10.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Akbar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akbar, S. (2020). Thymus vulgaris L. (Lamiaceae). In: Handbook of 200 Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-16807-0_185

Download citation

Publish with us

Policies and ethics