Skip to main content

Fast Implementation of Tunable ARN Nodes

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2018 2018)

Abstract

Auto Resonance Network (ARN) is a general purpose Artificial Neural Network (ANN) capable of non-linear data classification. Each node in an ARN resonates when it receives a specific set of input values. Coverage of an ARN node indicates the spread of values within which the gain is guaranteed to be above half-power point. Tuning of ARN nodes therefore refers to adjusting the coverage of an ARN node. These tuning equations of ARN nodes are complex and hence a fast hardware accelerator needs to be built to reduce performance bottlenecks. The paper discusses issues related to speed of computation of a resonating ARN node and its numerical accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVidia Telsa: a unified graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

    Article  Google Scholar 

  2. Halfhill, T.R.: Parallel processing with CUDA. Reed electronics group. http://www.nvidia.in/docs/IO/55972/220401_Reprint.pdf

  3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. White paper, Google Research, November 2015

    Google Scholar 

  4. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agarwal, G., Bajwa, R., et al.: In-datacenter performance analysis of a tensor processing unit. In: 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 2017

    Google Scholar 

  5. Liu, S., Du, Z., Tao, J., Han, D., Luo, T., Xie, Y., et al.: Cambricon: an instruction set architecture for neural networks. In: ACM/IEEE 43rd Annual International Symposium on Computer Architecture (2016)

    Google Scholar 

  6. Neural Processor News: Kirin 970’s Neural Processing Unit and Cambricon, November 2017. https://npu.ai/2017/11/kirin-970s-neural-processing-unit-and-cambricon/

  7. Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.: TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integrated Circuits Syst. 34, 1537–1557 (2015). https://doi.org/10.1109/TCAD.2015.2474396

    Article  Google Scholar 

  8. Andres, R., Eden, S., Etay, M., Evarist, F., Young, J.K., Haihao, S., Barukh, Z.: Lower numerical precision Deep Learning inference and training. White paper, Intel, January 2018

    Google Scholar 

  9. Koster, U., Webb, T., Wang, X., Nassar, M., Bansal, A., Constable, W., et al.: Flexpoint: an adaptive numerical format for efficient training of Deep Neural Networks. Intel, December 2017

    Google Scholar 

  10. Schmidhuber, J.: Deep learning in Neural Networks: An overview. Neural Netw. 61, 85–117 (2015). Archieves, Cornell university library

    Article  Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539. Review paper

    Article  Google Scholar 

  12. Mayannavar, S., Wali, U.: Performance comparison of Serial and parallel multipliers in massively parallel environment. In: ICEECCOT-2018, IEEE Xplore Digital Library (2018). (Accepted for publication)

    Google Scholar 

  13. Aparanji, V.M., Wali, U., Aparna, R.: A novel neural network structure for motion control in joints. In: ICEECCOT-2016, IEEE Xplore Digital Library, pp. 227–232, Doc no. 7955220 (2016)

    Google Scholar 

  14. Aparanji, V.M., Wali, U., Aparna, R.: Pathnet: a neuronal model for robotic motion planning. In: 3rd International Conference on Cognitive, Computing and Information Processing (CCIP 2017), Springer CCIS, December 2017

    Google Scholar 

  15. Mayannavar, S., Wali, U.: Hardware implementation of an activation function for neural network processor. In: IEEE Xplore Digital Library, January 2018. (In press)

    Google Scholar 

  16. Reif, J.H.: Complexity of the mover’s problem and generalizations. Department of Computer Science, University of Rochester, Research Report TR58, August 1979

    Google Scholar 

  17. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/

  18. Mayannavar, S., Wali, U.V.: Design of modular processor framework. Int. J. Technol. Sci. (IJTS) IX(1), 36–39 (2016). ISSN (Online) 2350-1111, (Print) 2350-1103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Mayannavar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mayannavar, S., Wali, U. (2020). Fast Implementation of Tunable ARN Nodes. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_46

Download citation

Publish with us

Policies and ethics