Skip to main content

Abstract

The treatment of osteoporotic patients is an increasing problem all over the world. Osteoporosis development and treatment methods are often researched with micro-CT. The description of the most common models and research directions is helpful in reviewing this complex research field. An experimental model of osteoporosis was conducted to evaluate the effect of different medications on osteoporosis which were scanned and evaluated with micro-CT. Micro-CT is utmost important and very effective for the evaluation of osteoporosis and evaluation of bone parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BALP:

Bone-specific alkaline phosphatase

BMC:

Bone mineral content

BMD:

Bone mineral density

BRONJ:

Bisphosphonate-related osteonecrosis of the jaw

BS/BV:

Bone surface/bone volume ratio

BV:

Bone volume

BV/TV:

Percentage of bone volume

Ca.Dm:

Canal diameter

Ca.Sp:

Canal separation

Ca.V:

Canal volume

Ca.V/TV:

Canal porosity

CKD:

Chronic kidney disease

Conn.D:

Connectivity density

Cr. BMD:

Cortical bone mineral density

CS:

Canal surface

Ct.Po:

Cortical porosity

Ct.Th:

Cortical thickness

CTX:

C-terminal telopeptide fragment of type I collagen

DA:

Degree of anisotropy

DEXA, DXA:

Dual energy X-ray absorptiometry

DPD:

Deoxypyridinoline

FEA:

Finite element analysis

L1–L4:

Lumbal 1–4 vertebra

Lc.N/TV:

Lacunar density

Lc.V/TV:

Lacunar porosity

NTX:

Type I collagen cross-linked N-telopeptide

OC:

Osteocalcin

OPG:

Osteoprotegerin

OVX:

Ovariectomized

PINP:

Procollagen type 1 amino-terminal propeptide

PTH:

Parathyroid hormone

ROI:

Region of interest

SAMP6:

Senescence-accelerated mouse P6

SHAM:

Sham-operated

SMI:

Structural model index

Tb.N:

Trabecular number

Tb.Pf:

Trabecular pattern factor

Tb.Sp:

Trabecular separation

Tb.Th:

Trabecular thickness

TMD:

Tissue mineral density

TRACP-5b:

Tartrate-resistant acid phosphatase 5b

TV:

Tissue volume

VOI:

Volume of interest

References

  1. Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F. Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res. 2005;20:529–35.

    PubMed  Google Scholar 

  2. Barling PM. Osteoporosis - an increasingly important issue for both young and aging citizens of Malaysia. leJSME. 2013;7(1):1–3.

    Google Scholar 

  3. Eckstein F, Matsuura M, Kuhn V, Priemel M, Müller R, Link TM, Lochmüller EM. Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res. 2007;22:817–24.

    PubMed  Google Scholar 

  4. Dufresne TE, Chmielewski PA, Manhart MD, Johnson TD, Borah B. Risedronate preserves bone architecture in early postmenopausal women in 1 year as measured by three-dimensional microcomputed tomography. Calcif Tissue Int. 2003;73:423–32.

    CAS  PubMed  Google Scholar 

  5. Arlot ME, Jiang Y, Geneant HK. Histomorphometric and microCT analysis of bone biopsie from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res. 2008;23:215–22.

    CAS  PubMed  Google Scholar 

  6. Fox J, Miller MA, Recker RR, Sp B, Smith SY, Moreau I. Treatment of postmenopausal osteoporotic women with parathyroid hormone 1-84 for 18 months increases cancellous bone formation and improves cancellous architecture: a study of iliac crest biopsy using histomorphometry and micro computed tomography. J Musculoskelet Neuronal Interact. 2005;5:356–7.

    CAS  PubMed  Google Scholar 

  7. Yamashita-Mikami E, Tanaka M, Sakurai N, Arai Y, Matsuo A, Ohshima H, Nomura S, Ejiri S. Correlation between alveolar bone microstructure and bone turnover marker sin pre- and post-menopausal women. Oral Maxillofac Surg. 2013;115:12–9.

    Google Scholar 

  8. Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA guidelines and animal models for osteoporosis. Bone. 1995;17(4 Suppl):125–33.

    Google Scholar 

  9. Gallagher A, Chambers TJ, Tobias JH. The estrogen antagonist ICI 182,780 reduces cancellous bone volume in female rats. Endocrinology. 1993;133:2787–91.

    CAS  PubMed  Google Scholar 

  10. Goulding A, Gold E. A new way to induce oestrogen-deficiency osteopaenia in the rat: comparison of the effects of surgical ovariectomy and administration of the LHRH agonist buserelin on bone resorption and composition. J Endocrinol. 1989;121:293–8.

    CAS  PubMed  Google Scholar 

  11. Zeng QQ, Jee WS, Bigornia AE, King JG Jr, D’Souza SM, Li XJ, Ma YF, Wechter WJ. Time responses of cancellous and cortical bones to sciatic neurectomy in growing female rats. Bone. 1996;19:13–21.

    CAS  PubMed  Google Scholar 

  12. Thompson DD, Rodan GA. Indomethacin inhibition of tenotomy-induced bone resorption in rats. J Bone Miner Res. 1988;3:409–14.

    CAS  PubMed  Google Scholar 

  13. Tian XY, Jee WS, Li X, Paszty C, Ke HZ. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone. 2011;48(2):197–201.

    CAS  PubMed  Google Scholar 

  14. Kim C, Park D. The effect of restriction of dietary calcium on trabecular and cortical bone mineral density in the rats. J Exerc Nutr Biochem. 2013;17(4):123–31.

    Google Scholar 

  15. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58:425–30.

    Google Scholar 

  16. Frost HM, Jee WSS. On the rat model of human osteopenias and osteoporoses. Bone Miner. 1992;18:227–36.

    CAS  PubMed  Google Scholar 

  17. Khajuria DK, Razdan R, Mahapatra DR. Description of a new method of ovariectomy in female rats. Rev Bras Reumatol. 2012;52(3):462–70.

    PubMed  Google Scholar 

  18. Gao X, Ma W, Dong H, Yong Z, Su R. Establishing a rapid animal model of osteoporosis with ovariectomy plus low calcium diet in rats. Int J Clin Exp Pathol. 2014;7(8):5123–8.

    PubMed  PubMed Central  Google Scholar 

  19. Dennison E, Cole Z, Cooper C. Diagnosis and epidemiology of osteoporosis. Curr Opin Reumatol. 2005;17:456–61.

    Google Scholar 

  20. Jee WS, Yao W. Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact. 2001;1(3):193–207.

    CAS  PubMed  Google Scholar 

  21. Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int. 2005;16:129–38.

    Google Scholar 

  22. Turner RT, Maran A, Lotinun S, Hefferan T, Evans GL, Zhang M, Sibonga JD. Animal models for osteoporosis. Rev Endocr Metab Disord. 2001;2:117–27.

    CAS  PubMed  Google Scholar 

  23. Kim JN, Lee JY, Shin KJ, Gil YC, Koh KS, Song WC. Haversian system of compact bone and comparison between endosteal and periosteal sides using three-dimensional reconstruction in rat. Anat Cell Biol. 2015;48(4):258–61.

    PubMed  PubMed Central  Google Scholar 

  24. Brouwers JEM, van Rietbergen B, Huiskes R, Ito K. Effects of PTH treatment on tibia bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int. 2009;20(11):1823–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwaniec UT, Moore K, Rivera MF, Myers SE, Vanegas SM, Wronski TJ. A comparative study of the bone-restorative efficacy of anabolic agents in aged ovariectomized rats. Osteoporos Int. 2007;18(3):351–62.

    CAS  PubMed  Google Scholar 

  26. Dai QG, Zhang P, Wu YQ, Ma XH, Pang J, Jiang LY, Fang B. Ovariectomy induced osteoporosis in the maxillary alveolar bone: an in vivo micro-CT and histomorphometric analysis in rats. Oral Dis. 2014;20(5):514–20.

    PubMed  Google Scholar 

  27. Yoon KH, Cho DC, Yu SH, Kim KT, Jeon Y, Sung JK. The change of bone metabolism in ovariectomized rats: analyses of microCT scan and biochemical markers of bone turnover. J Korean Neurosurg Soc. 2012;51(6):323–7.

    PubMed  PubMed Central  Google Scholar 

  28. Sharma D, Larriera AI, Palcio-Mancheno PE, Gatti V, Fritton JC, Bromage TG, Cardoso L, Doty SB, Fritton SP. The effects of estrogen deficiency on cortical bone microporosity and mineralization. Bone. 2018;110:1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ames MS, Hong S, Lee HR, Fields HW, Johnston WM, Kim DG. Estrogen deficiency increases variability of tissue mineral density of alveolar bone surrounding teeth. Arch Oral Biol. 2010;55(8):599–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang J, Farnell D, Devlin H, Horner K, Graham J. The effect of ovariectomy on mandibular cortical thickness in the rat. J Dent. 2005;33(2):123–9.

    PubMed  Google Scholar 

  31. Mavropoulos A, Rizzoli R, Ammann P. Different responsiveness of alveolar and tibial bone to bone loss stimuli. J Bone Miner Res. 2007;22(3):403–10.

    PubMed  Google Scholar 

  32. Kozai Y, Kawamata R, Sakurai T, Kanno M, Kashima I. Influence of prednisolone-induced osteoporosis on bone mass and bone quality of the mandible in rats. Dentomaxillofacial Radiol. 2009;38(1):34–41.

    CAS  Google Scholar 

  33. Blazsek J, Dobó-Nagy CS, Blazsek I, Varga R, Vecsei B, Fejérdy P, Varga G. Aminobisphosphonate stimulates bone regeneration and enforces consolidation of titanium implant into a new rat caudal vertebra model. Pathol Oncol Res. 2009;15:567–77.

    CAS  PubMed  Google Scholar 

  34. Bain SD, Bailey SC, Celino DL, Lantry MM, Edwards MW. High-dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse. J Bone Miner Res. 1993;8:435–42.

    CAS  PubMed  Google Scholar 

  35. Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33:387–98.

    PubMed  Google Scholar 

  36. Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;8:1197–207.

    Google Scholar 

  37. Willinghamm MD, Brodt MD, Lee KL, Stephens AL, Ye J, Silva MJ. Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int. 2010;86(6):470–83.

    CAS  PubMed  Google Scholar 

  38. Chen H, Zhou X, Emura S, Shoumura S. Site-specific bone loss in senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Exp Gerontol. 2009;44(12):792–8.

    CAS  PubMed  Google Scholar 

  39. Cano A, Dapía S, Noguera I, Pineda B, Hermenegildo C, del Var R, Caeiro JR, García-Pérez MA. Comparative effects of 17 B-estradiol, raloxifene and genistein on bone 3D microarchitecture and volumetric bone mineral density in the ovariectomized mice. Osteoporos Int. 2008;19(6):793–800.

    CAS  PubMed  Google Scholar 

  40. Willey JS, Livingston EW, Robbins ME, Bourland JD, Tirado-Lee L, Smith-Sielicki H, Bateman TA. Risedronate prevents early radiation-induced osteoporosis in mice at multiple skeletal location. Bone. 2010;46(1):101–11.

    CAS  PubMed  Google Scholar 

  41. Bouvard B, Gallois Y, Legrand E, Audran M, Chappard D. Glucocorticoids reduce alveolar and trabecular bone in mice. Joint Bone Spine. 2013;80(1):77–81.

    CAS  PubMed  Google Scholar 

  42. Sheng ZF, Xu K, Ma YL, Liu JH, Dai RC, Zhang YH, Jiang YB, Liao EY. Zoledronate reverses mandibular bone loss in osteoprotegerin-deficient mice. Osteoporos Int. 2009;20(1):151–9.

    CAS  PubMed  Google Scholar 

  43. He XY, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, Lee KM, Cao YP, Li G, Wei L, Hung LK, Leung KS, Qin L. Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone. 2011;48(6):1388–400.

    PubMed  Google Scholar 

  44. Bonucci E, Ballanti P. Osteoporosis-bone remodeling and animal models. Toxicol Pathol. 2014;42(6):957–69.

    CAS  PubMed  Google Scholar 

  45. Binte Anwar R, Tanaka M, Kohno S, Ikegame M, Watanabe N, Nowazesh Ali M, Ejiri S. Relationship between porotic changes in alveolar bone and spinal osteoporosis. J Dent Res. 2007;86:52–7.

    CAS  PubMed  Google Scholar 

  46. Ominsky MS, Boyd SK, Varela A, Jolette J, Felx M, Doyle N, Mellal N, Smith SY, Locher K, Buntich S, Pyrah I, Boyce RW. Romosozumab improves bone mass and strength while maintaining bone quality in ovariectomized cynomolgus monkeys. J Bone Miner Res. 2017;32(4):788–801.

    CAS  PubMed  Google Scholar 

  47. Cabal A, Williams DS, Jayakar RY, Zhang J, Sardesai S, Doung LT. Long-term treatment with odanacatib maintains normal trabecular biomechanical properties in ovariectomized adult monkeys as demonstrated by micro-CT based finite element analysis. Bone Rep. 2017;6:26–33.

    PubMed  PubMed Central  Google Scholar 

  48. Hordon LD, Itoda M, Shore PA, Heald M, Brown M, Kanis JA, Rodan GA, Aaron JE. Preservation of thoracic spine microarchitecture by alendronate: comparison of histology and microCT. Bone. 2006;38:444–9.

    CAS  PubMed  Google Scholar 

  49. Borah B, Dufresne TE, Cockman MD, Gross GJ, Sod EW, Myers WR, Combs KS, Higgins RE, Pierce SA, Stevens ML. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. J Bone Miner Res. 2000;15(9):1786–97.

    CAS  PubMed  Google Scholar 

  50. Pautke C, Kreutzer K, Weitz J, Knödler M, Münzel D, Wexel G, Otto S, Hapfelmeier A, Stürzenbaum S, Tischer T. Bisposphonate related osteonecrosis of the jaw: a minipig large animal model. Bone. 2012;51(3):592–9.

    CAS  PubMed  Google Scholar 

  51. Tsutsumi H, Ikeda S, Nkamura T. Osteoporosis model in minipigs. In: McAnulty PA, Dayan AD, Ganderup NC, Hastings KL, editors. The minipig in biomedical research. Boca Raton, FL: CRC Press; 2012. p. 517–25.

    Google Scholar 

  52. Chavassieux P, Garnero P, Duboeuf F, Vergnaud P, Brunner-Ferber F, Delmas PD, Meunier P. Effects of a new selective estrogen receptor modulator (MDL 103,323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J Bone Miner Res. 2001;16(1):89–96.

    CAS  PubMed  Google Scholar 

  53. Lill CA, Fluegel AK, Schneider E. Effect of ovariectomy, malnutrition and glucocorticoid application on bone properties in sheep: a pilot study. Osteoporos Int. 2002;13(6):480–6.

    CAS  PubMed  Google Scholar 

  54. Castaneda S, Calvo E, Largo R, Gonzalez-Gonzalez R, de La Piedre C, Diaz-Curiel M, Herrero-Beaumont G. Characterization of a new experimental model of osteoporosis in rabbits. J Bone Miner Metab. 2008;26(1):53–9.

    CAS  PubMed  Google Scholar 

  55. Baofeng L, Zhi Y, Bei C, Guolin M, Quingshui Y, Jian L. Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocorticoid. Acta Orthop. 2010;81(3):396–401.

    PubMed  PubMed Central  Google Scholar 

  56. Wilson AK, Bhattacharyya MH, Miller S, Mani A, Sacco-Gibson N. Ovariectomy-induced changes in aged beagles: histomorphometry of rib cortical bone. Calcif Tissue Int. 1998;62(3):237–43.

    CAS  PubMed  Google Scholar 

  57. Ding M, Day JS, Burr DB, Mashiba T, Hirano T, Weinans H, Sumner DR, Hvid I. Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates. Calcif Tissue Int. 2003;72(6):737–44.

    CAS  PubMed  Google Scholar 

  58. Siu WS, Qin L, Cheung WH, Leung KS. A study of trabecular bones in ovariectomized goats with micro-computed tomography and peripheral quantitative computed tomography. Bone. 2004;35(1):21–6.

    CAS  PubMed  Google Scholar 

  59. Yu Z, Wang G, Tang T, Fu L, Yu X, Zhu Z, Dai K. Long-term effects of ovariectomy on the properties of bone in goats. Exp Ther Med. 2015;9(5):1967–73.

    PubMed  PubMed Central  Google Scholar 

  60. Ding M, Danielsen CC, Hvid I. The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Calcif Tissue Int. 2008;82(1):77–86.

    CAS  PubMed  Google Scholar 

  61. Kim SW, Kim KS, Solis CD, Lee MS, Hyun BH. Development of osteoporosis animal model using micropigs. Lab Anim Res. 2013;29(3):174–7.

    PubMed  PubMed Central  Google Scholar 

  62. Li J, Bao Q, Chen S, Liu H, Feng J, Qin H, Liu D, Shen Y, Zhao Y, Zong Z. Different bone remodeling levels of trabecular and cortical bone in response to changes in Wnt/B-catenin signaling in mice. J Orthop Res. 2017;35(4):812–9.

    CAS  PubMed  Google Scholar 

  63. Wu Y, Adeeb S, Doschak MR. Using micro-CT derived bone microarchitecture to analyze bone stiffness—a case study on osteoporosis rat bone. Front Endocrinol. 2015;6:1–7.

    Google Scholar 

  64. Firdousi R, Parveen S. Local threshold techniques in image binarization. Int J Engin Comput Sci. 2014;3(3):4062–5.

    Google Scholar 

  65. Waarsing JH, Day JS, Weinans H. An improved segmentation method for in vivo microCT imaging. J Bone Miner Res. 2004;19(10):1640–50.

    PubMed  Google Scholar 

  66. Isaksson H, Töyräs J, Hakulinen M, Aula AS, Tamminen I, Julkunen P, Kröger H, Jurvelin JS. Structural parameters of normal and osteoporotic human trabecular bone are affected differently by microCT images resolution. Osteoporos Int. 2011;22(1):167–77.

    CAS  PubMed  Google Scholar 

  67. Longo AB, Salomon PL, Ward WE. Comparison of ex vivo and in vivo micro-computed tomography of rat tibia at different scanning settings. J Orthop Res. 2017;35(8):1690–8.

    CAS  PubMed  Google Scholar 

  68. Christiansen BA. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice. Bone Rep. 2016;5:136–40.

    PubMed  PubMed Central  Google Scholar 

  69. Milovanovic P, Vukovic Z, Antonijevic DD, Zivkovic V, Nikolic S, Djuric M. Porotic paradoxon: distribution of cortical bone sizes at nano- and micro-levels in healthy vs. fragile human bone. J Mater Sci Mater Med. 2017;28(5):71–7.

    PubMed  Google Scholar 

  70. Oszteoporotikus csigolyatörések I. rész 2007 Oszteológiai Közlemények 3:137–146.

    Google Scholar 

  71. Cesar R, Boffa RS, Fachine LT, LeviasTP SAMH, Pereira CAM, Reiff RBM, Rollo JMDA. Evaluation of trabecular microarchitecture of normal osteoporotic and osteopenic human vertebrae. Proc Engineer. 2013;59:6–15.

    Google Scholar 

  72. Mackay DL, Kean TJ, Bernardi KG, Haeberle HS, Ambrose CG, Lin F, Dennis JE. Reduced bone loss in a murine model of postmenopausal osteoporosis lacking complement component 3. J Orthop Res. 2018;36(1):118–28.

    CAS  PubMed  Google Scholar 

  73. Chen H, Zhou S, Shoumura S, Emura S, Bunai Y. Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int. 2010;21(4):627–36.

    CAS  PubMed  Google Scholar 

  74. Kang KY, Kang Y, Kim M, Kim Y, Yi H, Kim J, Jung HR, Park SH, Kim HY, Ju JH, Hong YS. The effects of antihypertensive drugs on bone mineral density in ovariectomized mice. J Korean Med Sci. 2013;28(8):1139–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Faot F, Chatterjee M, de Camargos GV, Duyck J, Vandamme K. Micro-CT analysis of rodent jaw bone micro-architecture: a systematic review. Bone Rep. 2015;2:14–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanaka M, Ejiri S, Kohno S, Ozawa H. Region-specific bone mass changes in rat mandibular condyle following ovariectomy. J Dent Res. 2000;79:1907–13.

    CAS  PubMed  Google Scholar 

  77. Rhee Y, Hur JH, Won YY, Lim SK, Beak MH, Cui WQ, Kim KG, Kim YE. Assessment of bone quality using finite element analysis based upon micro-CT images. Clin Orthop Surg. 2009;1(1):40–7.

    PubMed  PubMed Central  Google Scholar 

  78. Parashar SK, Sharma JK. A review on application of finite element modelling in bone biomechanics. Perspect Sci. 2016;8:696–8.

    Google Scholar 

  79. Christen P, Schulte FA, Zwahlen A, van Rietberger B, Boutroy S, Melton LJ III, Amin S, Khosla S, Goldhahn J, Müller R. Voxel size dependency, reproducibility and sensitivity of an in vivo bone loading estimation algorithm. J R Soc Interface. 2015;13:1–8.

    Google Scholar 

  80. Barak MM, Black MA. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J Mech Behav Biomed Mater. 2018;78:455–64.

    PubMed  Google Scholar 

  81. Particelli F, Mecozzi L, Beraudi A, Montesi M, Baruffaldi F, Viceconti M. A comparison between micro-CT and histology for evaluation of cortical bone: effect of polymethylmethacrylate embedding on structural parameters. J Microsc. 2011;245(3):302–10.

    PubMed  Google Scholar 

  82. Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, Bonewald LF, Dallas SL. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging. 2017;9(10):2190–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pazzaglia UE, Zarattini G, Giacomini D, Rodella L, Menti AM, Feltrin G. Morphometric analysis of the canal system of cortical bone: an experimental study in the rabbit femur carried out with standard histology and micro-CT. Anat Histol Embryol. 2010;39(1):17–26.

    CAS  PubMed  Google Scholar 

  84. Britz HM, Jokihaara J, Leppanen OV, Jarvinen T, Cooper DML. 3D visualisation and quantification of rat cortical bone porosity using a desktop micro-CT system: a case study in tibia. J Microsc. 2010;240:32–7.

    CAS  PubMed  Google Scholar 

  85. Gur A, Nas K, Kayan O, Atay MB, Akyuz G, Sindal D, Adam M. The relation between tooth loss and bone mass in postmenopausal osteoporotic women in Turkey: a multicenter study. J Bone Miner Metab. 2003;21(1):43–7.

    PubMed  Google Scholar 

  86. Jeffcoat M. The association between osteoporosis and oral bone loss. J Periodontol. 2005;76:2125–32.

    PubMed  Google Scholar 

  87. Ejiri S, Tanaka M, Watanabe N, Anwar RB, Yamashita E, Yamada K. Estrogen deficiency and its effect on the jaw bones. J Bone Miner Metab. 2008;26(5):409–15.

    CAS  PubMed  Google Scholar 

  88. Lee MM, Chu EY, El-Abbadi MM, Foster BL, Tompkins KA, Giachelli CM, Somerman MJ. Characterization of mandibular bone in a mouse model of chronic kidney disease. J Periodontol. 2010;81:300–9.

    PubMed  PubMed Central  Google Scholar 

  89. Guo Y, Sun N, Duan X, Xu X, Zheng L, Seriwatanachai D, Wang Y, Yuan Q. Estrogen deficiency leads to further bone loss int he mandible of CDK mice. PLoS One. 2016;11(2):e0148804. https://doi.org/10.1371/journal.pone.0148804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Johnston BD, Ward WE. The ovariectomized rat as a model for studying alveolar bone loss in postmenopausal women. Biomed Res Int. 2015;2015:635023. https://doi.org/10.1155/2015/635023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szandra Körmendi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körmendi, S., Vecsei, B., Orhan, K., Dobó-Nagy, C. (2020). Micro-CT in Osteoporosis Research. In: Orhan, K. (eds) Micro-computed Tomography (micro-CT) in Medicine and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16641-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16641-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16640-3

  • Online ISBN: 978-3-030-16641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics