Skip to main content

Predicting Postoperative Complications for Gastric Cancer Patients Using Data Mining

  • Conference paper
  • First Online:
Intelligent Technologies for Interactive Entertainment (INTETAIN 2018)

Abstract

Gastric cancer refers to the development of malign cells that can grow in any part of the stomach. With the vast amount of data being collected daily in healthcare environments, it is possible to develop new algorithms which can support the decision-making processes in gastric cancer patients treatment. This paper aims to predict, using the CRISP-DM methodology, the outcome from the hospitalization of gastric cancer patients who have undergone surgery, as well as the occurrence of postoperative complications during surgery. The study showed that, on one hand, the RF and NB algorithms are the best in the detection of an outcome of hospitalization, taking into account patients’ clinical data. On the other hand, the algorithms J48, RF, and NB offer better results in predicting postoperative complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biglarian, A., Hajizadeh, E., Kazemnejad, A., Zali, M.R.: Application of artificial neural network in predicting the survival rate of gastric cancer patients. Iran. J. Public Health 40(2), 80–86 (2011)

    Google Scholar 

  2. Rugge, M., Fassan, M., Graham, D.Y.: Epidemiology of gastric cancer. In: Strong, V. (ed.) Gastric Cancer, pp. 23–34. Cham, Springer (2015). https://doi.org/10.1007/978-3-319-15826-6_2

    Chapter  Google Scholar 

  3. Brenner, H., Rothenbacher, D., Arndt, V.: Epidemiology of stomach cancer. In: Verma, M. (ed.) Methods of Molecular Biology, pp. 467–477. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-60327-492-0_23

    Chapter  Google Scholar 

  4. Sitarz, R., Skierucha, M., Mielko, J., Offerhaus, G.J.A., Maciejewski, R., Polkowski, W.: Gastri cancer: epidemiology, prevention, classification, and treatment. Cancer Manag. Res. 10, 239–248 (2018)

    Article  Google Scholar 

  5. Roder, D.M.: The epidemiology of gastric cancer. Gastric Cancer 5(Suppl 1), 5–11 (2002)

    Article  Google Scholar 

  6. Karimi, P., Islami, F., Anandasabapathy, S., Freedman, N.D., Kamangar, F.: Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomark. Prev. 23(5), 700–713 (2014)

    Article  Google Scholar 

  7. Koh, H.C., Tan, G.: Data mining applications in healthcare. J. Healthc. Inf. Manag. 19(2), 64–72 (2011)

    Google Scholar 

  8. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  9. Tuffery, S.: Data Mining and Statistics for Decision-Making, 1st edn. Wiley, Oxford (2011)

    Book  Google Scholar 

  10. Fonseca, F., Peixoto, H., Miranda, F., Machado, J., Abelha, A.: Step towards prediction of perineal tear. Procedia Comput. Sci. 113, 565–570 (2017)

    Article  Google Scholar 

  11. Bâra, A., Lungu, I.: Improving decision support systems with data mining techniques. In: Advances in Data Mining Knowledge Discovery and Applications. INTECH Open Access Publisher, pp. 397–418 (2012)

    Google Scholar 

  12. Shim, J., Warkentin, M., Courtney, J., Power, D., Sharda, R., Carlsson, C.: Past, present, and future of decision support technology. Decis. Support Syst. 33(2), 111–126 (2002)

    Article  Google Scholar 

  13. Beeler, P., Bates, D., Hug, B.: Clinical decision support systems. Swiss Med. Wkly 144, w14073 (2014)

    Google Scholar 

  14. Trowbridge, R., Weingarten, S.: Clinical decision support systems [Internet], Chap. 53. United States Department of Health & Human Services Agency for Healthcare Research and Quality (2001). https://archive.ahrq.gov/clinic/ptsafety/chap53.htm. Accessed 6 May 2018

  15. Morais, A., Peixoto, H., Coimbra, C., Abelha, A., Machado, J.: Predicting the need of Neonatal Resuscitation using data mining. Procedia Comput. Sci. 113, 571–576 (2017)

    Article  Google Scholar 

  16. Svetnik, V., Liaw, A., Tong, C., Culberson, J., Sheridan, R., Feuston, B.: Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43(6), 1947–1958 (2003)

    Article  Google Scholar 

  17. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn imbalanced data (2004)

    Google Scholar 

  18. Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82, 128–150 (2017)

    Article  Google Scholar 

  19. Khoshgoftaar, T., Golawala, M., Hulse, J.: An empirical study of learning from imbalanced data using random forest. In: 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007) (2007)

    Google Scholar 

  20. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  21. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)

    Google Scholar 

  22. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2009)

    Article  Google Scholar 

  23. Zhao, Y., Zhang, Y.: Comparison of decision tree methods for finding active objects. Adv. Space Res. 41(12), 1955–1959 (2008)

    Article  Google Scholar 

  24. Rajput, A., Aharwal, R., Dubey, M., Saxena, S., Raghuvanshi, M.: J48 and JRIP rules for e-governance data. Int. J. Comput. Sci. Secur. (IJCSS) 5(2), 201–207 (2011)

    Google Scholar 

  25. Mohamed, W., Salleh, M., Omar, A.: A comparative study of reduced error pruning method in decision tree algorithms. In: 2012 IEEE International Conference on Control System, Computing and Engineering, pp. 392–397 (2012)

    Google Scholar 

  26. Delen, D., Walker, G., Kadam, A.: Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34(2), 113–127 (2005)

    Article  Google Scholar 

  27. Khalilia, M., Chakraborty, S., Popescu, M.: Predicting disease risks from highly imbalanced data using random forest. BMC Med. Informat. Decis.-Making 11(1), 51 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Compete: POCI-01-0145-FEDER-007043 and FCT within the Project Scope UID/CEC/00319/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Peixoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peixoto, H. et al. (2019). Predicting Postoperative Complications for Gastric Cancer Patients Using Data Mining. In: Cortez, P., Magalhães, L., Branco, P., Portela, C., Adão, T. (eds) Intelligent Technologies for Interactive Entertainment. INTETAIN 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-030-16447-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16447-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16446-1

  • Online ISBN: 978-3-030-16447-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics