Skip to main content

The Tinbergen Shortfall: Developments on Aquatic Insect Behavior that Are Critical for Freshwater Conservation

  • Chapter
  • First Online:
Aquatic Insects

Abstract

Humans have altered biodiversity worldwide, including accelerating species extinctions and loss of ecosystem services. Loss of many species is occurring even before they are collected for study, and researchers have recognized seven knowledge shortfalls that affect biodiversity and its use in conservation. This loss is especially true in aquatic ecosystems highly threatened by human pressures, including habitat transformation and degradation, and water extraction. Here, we propose the “Tinbergen shortfall” in honor of Nikolaas Tinbergen, related to limited knowledge of aquatic insect behavior in tropical regions, and how this shortfall highlights the need to have more knowledge on aquatic insect behavior for improving applied ecology, specifically biomonitoring, as it is the field where aquatic insect behavior information is most often used in measuring water quality, ecological integrity, and conservation. Through a systematized literature search in Web of Knowledge database, we showed the limitation of our current knowledge on aquatic insects, behavior, and its use in conservation. We demonstrate a bias toward temperate countries, orders (e.g., Lepidoptera, Orthoptera, and Heteroptera), behavioral topic (feeding behavior), and limited use of aquatic insect behavioral knowledge in conservation science. Although aquatic insects having a long-established history in biomonitoring protocols worldwide, the use of behavior knowledge, such as oviposition and dispersal, is still limited. We emphasize the behavior that proxies can be used in biomonitoring and conservation studies in cases where information is unavailable, and how behavior information can improve recent approaches such as simulation modelling. Aquatic insect behavior can better inform conservation strategies based on scientific evidence, and we use some examples, including the creation and maintenance of protected areas, the reduction of anthropogenic impacts on animal behavior, and the development of specific agendas for animal species or groups of species that are particularly relevant for their value and changes in human behavior. The challenges ahead for biodiversity conservation will require addressing Tinbergen shortfall for aquatic insects and the increase of our understanding about the behavior of our own species in relation to the others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlroth P, Alatalo RV, Holopainen A et al (2003) Founder population size and number of source populations enhance colonization success in water striders. Oecologia 137:617–620

    Article  Google Scholar 

  • Azevedo-Santos VM, Frederico RG, Fagundes CK et al (2018) Protected areas: a focus on Brazilian freshwater biodiversity. Divers Distrib 1–7. https://doi.org/10.1111/ddi.12871

    Article  Google Scholar 

  • Balian EV, Segers H, Leveque C et al (2008) The freshwater animal diversity assessment: an overview of the results. Hydrobiology 595:627–637

    Article  Google Scholar 

  • Bedê LC, Machado ABM, Piper W et al (2015) Odonata of the Serra de São José – Brazil’s first wildlife reserve aimed at the conservation of dragonflies. Notulae Odonatologicae 8:117–155

    Google Scholar 

  • Berger-Tal O, Polak T, Oron A et al (2011) Integrating animal behavior and conservation biology: a conceptual framework. Behav Ecol 22:236–239

    Article  Google Scholar 

  • Blumstein DT, Fernández-Juricic E (2004) The emergence of conservation behavior. Conserv Biol 18:1175–1177

    Article  Google Scholar 

  • Buss DF, Carlisle DM, Chon T-S et al (2015) Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environ Monit Assess 187:4132

    Article  Google Scholar 

  • Buytaert W, Zulkafli Z, Grainger S et al (2014) Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Front Earth Sci 2:1–21

    Article  Google Scholar 

  • CBD (2014) Global Biodiversity Outlook 4. https://www.cbd.int/gbo4/. Accessed 17 Jan 2019

  • Corbet PS (2004) Dragonflies: behaviour and ecology of odonata. Harley Books, Colchester, England

    Google Scholar 

  • Cordero-Rivera A (2017) Behavioral diversity (ethodiversity): a neglected level in the study of biodiversity. Front Ecol Environ 5:7

    Google Scholar 

  • Covich AP, Austen MC, Barlocher F et al (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775

    Article  Google Scholar 

  • Di Marco M, Chapman S, Althor G et al (2017) Changing trends and persisting biases in three decades of conservation science. Glob Ecol Conserv 10:32–42

    Article  Google Scholar 

  • Diniz-Filho JAF, De Marco JP, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179

    Google Scholar 

  • Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  Google Scholar 

  • Dolny A, Sigutova H, Ozana S et al (2018) How difficult is it to reintroduce a dragonfly? Fifteen years monitoring Leucorrhinia dubia at the receiving site. Biol Conserv 218:110–117

    Article  Google Scholar 

  • Downes BJ, Lancaster J (2018) Itinerant, nomad or invader? A field experiment sheds light on the characteristics of successful dispersers and colonists. Freshw Biol 63:1394–1406

    Article  CAS  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  Google Scholar 

  • Dudgeon D (2014) Threats to freshwater biodiversity in a changing world. In: Freedman B (ed) Global environmental change. Springer, Dordrecht, pp 243–253

    Chapter  Google Scholar 

  • Eason PK, Switzer PV (2006) Spatial learning in dragonflies. Int J Comp Psychol 19:268–281

    Google Scholar 

  • Economo EP (2011) Biodiversity conservation in metacommunity networks: linking pattern and persistence. Am Nat 177:167–180

    Article  Google Scholar 

  • Encalada AC, Peckarsky BL (2012) Large-scale manipulation of mayfly recruitment affects population size. Oecologia 168:967–976

    Article  Google Scholar 

  • Erős T, Olden JD, Schick RS et al (2012) Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc Ecol 27:303–317

    Article  Google Scholar 

  • Faithpraise FO, Idung J, Usibe B et al (2014) Natural control of the mosquito population via Odonata and Toxorhynchites. Int J Innov Res Sci Eng Technol 3:12898–12911

    Google Scholar 

  • Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest-management. Annu Rev Entomol 42:123–146

    Article  CAS  Google Scholar 

  • Gaston KJ, Soga M, Duffy JP et al (2018) Personalised ecology. Trends Ecol Evol 33:916–925

    Article  Google Scholar 

  • Guillermo-Ferreira R, Del-Claro K (2011) Oviposition site selection in Oxyagrion microstigma Selys, 1876 (Odonata: Coenagrionidae) is related to aquatic vegetation structure. Int J Odonatol 14:275–279

    Article  Google Scholar 

  • Heino J (2013) The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol Rev 88:166–178

    Article  Google Scholar 

  • Heino J, Peckarsky BL (2014) Integrating behavioral, population and large-scale approaches for understanding stream insect communities. Insect Sci 2:7–13

    Google Scholar 

  • Hortal J, de Bello F, Diniz-Filho JAF et al (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549

    Article  Google Scholar 

  • IUCN (2017) Redlist of threatened species, version 2017-3. http://www.iucnredlist.org. Accessed 08 Jan 2019

  • Lancaster J, Downes BJ, Arnold A (2011) Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. J Anim Ecol 80:1061–1069

    Article  Google Scholar 

  • Lancaster J, Downes BJ (2014) Maternal behaviours may explain riffle-scale variations in some stream insect populations. Freshw Biol 59:502–513

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N (2014) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Leibold MA, Chase JM (2018) Metacommunity ecology, vol 59. Princeton University Press, Princeton

    Book  Google Scholar 

  • Lomolino MV (2004) Conservation biogeography. In: Lomolino MV, Heaney LR (eds) Frontiers of biogeography. New directions in the geography of nature. Sinauer Associates, Sunderland, MA, pp 293–296

    Google Scholar 

  • Luck GW, Harrington R, Harrison PA et al (2009) Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59:223–235

    Article  Google Scholar 

  • Merrit RW, Cummins KW, Berg MB (2008) An introduction to aquatic insects of North America, 4th edn. Kendall Hunt Publishers, Dubuque

    Google Scholar 

  • Nerbonne JF, Nelson KC (2004) Volunteer macroinvertebrate monitoring in the United States: resource mobilization and comparative state structures. Soc Nat Resour 17:817–839

    Article  Google Scholar 

  • Nieto C, Ovando XMC, Loyola R et al (2017) The role of macroinvertebrates for conservation of freshwater systems. Ecol Evol 7:5502–5513

    Article  Google Scholar 

  • Peckarsky BL, Cooper SD, McIntosh AR et al (1997) Extrapolating from individual behavior to populations and communities in streams. J N Am Benthol Soc 16:375–390

    Article  Google Scholar 

  • Pelicice FM, Azevedo-Santos VM, Vitule JR et al (2017) Neotropical freshwater fishes imperiled by unsustainable policies. Fish Fish 18:1119–1133

    Article  Google Scholar 

  • Rodrigues ME, Roque FO, Quintero JMO et al (2016) Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biol Conserv 194:113–120

    Article  Google Scholar 

  • Rodrigues ME, Roque FO, Guillermo-Ferreira R et al (2018) Egg-laying traits reflect shifts in dragonfly assemblages in response to different amount of tropical forest cover. Insect Conserv Divers. https://doi.org/10.1111/icad.12319

    Article  Google Scholar 

  • Roque FO, Menezes JFS, Northfield T et al (2018) Warning signals of biodiversity collapse across gradients of tropical forest loss. Sci Rep 8:1622

    Article  Google Scholar 

  • Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates. Springer, New York

    Google Scholar 

  • Samways MJ (2007) Insect conservation: a synthetic management approach. Annu Rev Entomol 52:465–487

    Article  CAS  Google Scholar 

  • Samways MJ, McGeoch MA, New TR (2010) Insect conservation: a handbook of approaches and methods. Oxford University Press, Oxford

    Google Scholar 

  • Samways MJ (2018) Insect conservation for the twenty-first century. In: Shah MM, Sharif U (eds) Insect science diversity, conservation and nutrition. InTechOpen, London

    Google Scholar 

  • Simaika JP, Samways MJ (2018) Insect conservation psychology. J Insect Conserv 22:635–642

    Article  Google Scholar 

  • Siqueira T, Durães LD, Roque FDO (2014) Predictive modelling of insect metacommunities in biomonitoring of aquatic networks. In: Ferreira CP, Godoy WAC (eds) Ecological modelling applied to entomology. Springer, Amsterdam, pp 109–126

    Google Scholar 

  • Siva-Jothy MT, Gibbons DW, Pain D (1995) Female oviposition site preference and egg hatching success in the damselfly Calopteryx splendens xanthostoma. Behav Ecol Sociobiol 37:39–44

    Article  Google Scholar 

  • Soga M, Gaston KJ (2016) Extinction of experience: the loss of human-nature interactions. Front Ecol Environ 14:94–101

    Article  Google Scholar 

  • Steffen W, Richardson K, Rockström J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:6223

    Article  Google Scholar 

  • Strayer DL (2006) Challenges for freshwater invertebrate conservation. J N Am Benthol Soc 25:271–287

    Article  Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358

    Article  Google Scholar 

  • Suter GW, Cormier SM (2014) Why care about aquatic insects: uses, benefits, and services. Integr Environ Asses Manag 11:188–194

    Article  Google Scholar 

  • Sutherland WJ (1998) The importance of behavioural studies in conservation biology. Anim Behav 56:801–809

    Article  CAS  Google Scholar 

  • Tavares RI, Pestana GC, Rocha AD et al (2018) Come to the dark side: habitat selection of larval odonates depends on background visual patterns. Ecol Entomol 43:640–646

    Article  Google Scholar 

  • Tonkin JD, Altermatt F, Finn DS et al (2018) The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw Biol 63:141–163

    Article  Google Scholar 

  • Valente-Neto F, Durães L, Siqueira T et al (2018) Metacommunity detectives: confronting models based on niche and stochastic assembly scenarios with empirical data from a tropical stream network. Freshw Biol 63:86–99

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  Google Scholar 

  • Whittaker RJ, Araújo MB, Paul J et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Winemiller KO, McIntyre PB, Castello L et al (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129

    Article  CAS  Google Scholar 

  • Zwick P, Becker G, Wagner R et al (2011) The fauna of the Breitenbach in central European stream ecosystems. In: Wagner R, Marksen J, Zwick P et al (eds) The long term study of the Breitenbach. Weinheim, Wiley-Blackwell, pp 195–485

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira Roque, F. et al. (2019). The Tinbergen Shortfall: Developments on Aquatic Insect Behavior that Are Critical for Freshwater Conservation. In: Del-Claro, K., Guillermo, R. (eds) Aquatic Insects. Springer, Cham. https://doi.org/10.1007/978-3-030-16327-3_15

Download citation

Publish with us

Policies and ethics