Skip to main content

Time-Dependent Survival Neural Network for Remaining Useful Life Prediction

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11439))

Included in the following conference series:

Abstract

Remaining useful life (RUL) prediction has been a topic of practical interest in many fields involving preventive intervention, including manufacturing, medicine and healthcare. While most of the conventional approaches suffer from censored failures arising and statistically circumscribed assumptions, few attempts have been made to predict RUL by developing a survival learning machine that explores the underlying relationship between time-varying prognostic variables and failure-free survival probability. This requires a purely data-driven prediction approach, devoid of any a survival model and all statistical assumptions. To this end, we propose a time-dependent survival neural network that additively estimates a latent failure risk and performs multiple binary classifications to generate prognostics of RUL-specific probability. We train the neural network by a new survival learning criterion that minimizes the censoring Kullback-Leibler divergence and guarantees monotonicity of the resulting probability. Experiments on four datasets demonstrate the great promise of our approach in real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buckley, J., James, I.: Linear regression with censored data. Biometrika 66(3), 429–436 (1979)

    Article  MATH  Google Scholar 

  2. Chen, L., Wang, S.: Central clustering of categorical data with automated feature weighting. In: IJCAI, pp. 1260–1266 (2013)

    Google Scholar 

  3. Cox, D.R.: Regression models and life tables. J. R. Stat. Soc. Ser. B. Stat. Methodol. 34, 187–220 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1), 73–82 (1995)

    Article  Google Scholar 

  5. Fisher, L.D., Lin, D.Y.: Time-dependent covariates in the Cox proportional-hazards regression model. Annu. Rev. Public Health 20(1), 145–157 (1999)

    Article  Google Scholar 

  6. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival forests. Ann. Appl. Stat. 2, 841–860 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Katzman, J., Shaham, U., Bates, J., Cloninger, A., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18, 18–24 (2018)

    Article  Google Scholar 

  8. Kim, H., Golub, G.H., Park, H.: Imputation of missing values in DNA microarray gene expression data. In: CSB, pp. 572–573 (2004)

    Google Scholar 

  9. Li, H., Ge, Y., Zhu, H., Xiong, H., Zhao, H.: Prospecting the career development of talents: a survival analysis perspective. In: KDD, pp. 917–925 (2017)

    Google Scholar 

  10. Li, Y., Wang, J., Ye, J., Reddy, C.K.: A multi-task learning formulation for survival analysis. In: KDD, pp. 1715–1724 (2016)

    Google Scholar 

  11. Li, Y., Wang, L., Wang, J., Ye, J., Reddy, C.K.: Transfer learning for survival analysis via efficient L2, 1-norm regularized Cox regression. In: ICDM, pp. 231–240 (2017)

    Google Scholar 

  12. Li, Y., Xu, K.S., Reddy, C.K.: Regularized parametric regression for high-dimensional survival analysis. In: SDM, pp. 765–773 (2016)

    Google Scholar 

  13. Lin, H.C., Baracos, V., Greiner, R., Chun-Nam, J.Y.: Learning patient-specific cancer survival distributions as a sequence of dependent regressors. In: NIPS, pp. 1845–1853 (2011)

    Google Scholar 

  14. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4(1), 1–32 (1996)

    Article  Google Scholar 

  15. Moghaddass, R., Rudin, C.: The latent state hazard model, with application to wind turbine reliability. Ann. Appl. Stat. 9(4), 1823–1863 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sinha, D., Ibrahim, J.G., Chen, M.: A Bayesian justification of Cox’s partial likelihood. Biometrika 90(3), 629–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Street, W.N.: A neural network model for prognostic prediction. In: ICML, pp. 540–546 (1998)

    Google Scholar 

  18. Vinzamuri, B., Li, Y., Reddy, C.K.: Active learning based survival regression for censored data. In: CIKM, pp. 241–250 (2014)

    Google Scholar 

  19. Wang, L., Li, Y., Zhou, J., Zhu, D., Ye, J.: Multi-task survival analysis. In: ICDM, pp. 485–494 (2017)

    Google Scholar 

  20. Wang, P., Li, Y., Reddy, C.K.: Machine learning for survival analysis: a survey. ACM Comput. Surv. 51(6), 1–36 (2019)

    Article  Google Scholar 

  21. Wei, L.J.: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat. Med. 11(14–15), 1871–1879 (1992)

    Article  Google Scholar 

  22. Wilamowski, B.M., Yu, H.: Neural network learning without backpropagation. IEEE Trans. Neural Netw. 21(11), 1793–1803 (2010)

    Article  Google Scholar 

  23. Wu, Y., Yuan, M., Dong, S., Lin, L., Liu, Y.: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neural Comput. 275, 167–179 (2018)

    Google Scholar 

  24. Yu, S., et al.: Privacy-preserving Cox regression for survival analysis. In: KDD, pp. 1034–1042 (2008)

    Google Scholar 

  25. Zhang, J., Chen, L., Vanasse, A., Courteau, J., Wang, S.: Survival prediction by an integrated learning criterion on intermittently varying healthcare data. In: AAAI, pp. 72–78 (2016)

    Google Scholar 

  26. Zhang, J., Wang, S., Courteau, J., Chen, L., Bach, A., Vanasse, A.: Predicting COPD failure by modeling hazard in longitudinal clinical data. In: ICDM, pp. 639–648 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61672157, the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant No. 396097-2010, the program PAFI of Centre de Recherche du CHUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengrui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Wang, S., Chen, L., Guo, G., Chen, R., Vanasse, A. (2019). Time-Dependent Survival Neural Network for Remaining Useful Life Prediction. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11439. Springer, Cham. https://doi.org/10.1007/978-3-030-16148-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16148-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16147-7

  • Online ISBN: 978-3-030-16148-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics