Skip to main content

Identification of Posttranslational Modifications (PTMs) of Proteins by Mass Spectrometry

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Abstract

There are only 30,000 human genes, which, according to the central dogma from biology, it means that there should be 30,000 mRNA and 30,000 proteins. However, there are at least 1-2 million protein entities that are expressed in a cell at a given time. This is primarily due to alternative splicing in different cells and tissues, which may lead to expression of different protein isoforms within one cell, but also different protein isoforms in different tissues. A new level of complexity of proteins and protein isoforms is then given by posttranslational modifications (PTMs) of proteins. Here, we discuss the PTMs in proteins and how they are identified by mass spectrometry and proteomics, with specific examples on identification of acetylation, phosphorylation, glycosylation, alkylation, hydroxinonenal-modification or assignment of intramolecular and intermolecular disulfide bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmutz, J., Wheeler, J., Grimwood, J., Dickson, M., Yang, J., Caoile, C., et al. (2004). Quality assessment of the human genome sequence. Nature, 429(6990), 365–368.

    Article  CAS  PubMed  Google Scholar 

  2. Stein, L. (2001). Genome annotation: From sequence to biology. Nature Reviews. Genetics, 2(7), 493–503.

    Article  CAS  PubMed  Google Scholar 

  3. Eisenberg, D., Marcotte, E. M., Xenarios, I., & Yeates, T. O. (2000). Protein function in the post-genomic era. Nature, 405(6788), 823–826.

    Article  CAS  PubMed  Google Scholar 

  4. Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., et al. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131(6), 1190–1203.

    Article  CAS  PubMed  Google Scholar 

  5. Manning, G., Plowman, G. D., Hunter, T., & Sudarsanam, S. (2002). Evolution of protein kinase signaling from yeast to man. Trends in Biochemical Sciences, 27(10), 514–520.

    Article  CAS  PubMed  Google Scholar 

  6. Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.

    Article  CAS  PubMed  Google Scholar 

  7. Ohtsubo, K., & Marth, J. D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell, 126(5), 855–867.

    Article  CAS  PubMed  Google Scholar 

  8. Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., et al. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127(3), 635–648.

    Article  CAS  PubMed  Google Scholar 

  9. Bischoff, R., & Schluter, H. (2012). Amino acids: Chemistry, functionality and selected non-enzymatic post-translational modifications. Journal of Proteomics, 75(8), 2275–2296.

    Article  CAS  PubMed  Google Scholar 

  10. Darie, C. (2013). Mass spectrometry and proteomics: Principle, workflow, challenges and perspectives. Modern Chemistry & Applications, 1(2), e105.

    Article  Google Scholar 

  11. Darie, C. (2013). Post-translational modification (PTM) proteomics: Challenges and perspectives. Modern Chemistry & Applications, 1, e114.

    Google Scholar 

  12. Darie, C. C. (2013). Mass spectrometry and its application in life sciences. Australian Journal of Chemistry, 66, 1–2.

    Article  CAS  Google Scholar 

  13. Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., & Darie, C. C. (2013). Identification of post-translational modifications by mass spectrometry. Australian Journal of Chemistry, 66, 734–748.

    Article  CAS  Google Scholar 

  14. Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Wormwood, K. L., Dao, S., Patel, S., et al. (2013). Automated mass spectrometry-based functional assay for the routine analysis of the secretome. Journal of Laboratory Automation, 18(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  15. Ngounou Wetie, A. G., Sokolowska, I., Wormwood, K., Michel, T. M., Thome, J., Darie, C. C., et al. (2013). Mass spectrometry for the detection of potential psychiatric biomarkers. Journal of Molecular Psychiatry, 1, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sokolowska, I., Gawinowicz, M. A., Wetie, A. G., & Darie, C. C. (2012). Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis, 33(16), 2527–2536.

    Article  CAS  PubMed  Google Scholar 

  17. Sokolowska, I., Ngounou Wetie, A. G., Roy, U., Woods, A. G., & Darie, C. C. (2013). Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. Biochimica et Biophysica Acta, 1834(8), 1474–1483.

    Article  CAS  PubMed  Google Scholar 

  18. Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2013). Applications of mass spectrometry in proteomics. Australian Journal of Chemistry, 66, 721–733.

    Article  CAS  Google Scholar 

  19. Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., & Darie, C. C. (2012). Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cellular and Molecular Life Sciences, 70, 2835.

    Article  PubMed  CAS  Google Scholar 

  20. Sokolowska, I., Woods, A. G., Wagner, J., Dorler, J., Wormwood, K., Thome, J., et al. (2011). Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.

    Google Scholar 

  21. Woods, A. G., Sokolowska, I., & Darie, C. C. (2012). Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment. Biochemical and Biophysical Research Communications, 419(2), 305–308.

    Article  CAS  PubMed  Google Scholar 

  22. Woods, A. G., Sokolowska, I., Taurines, R., Gerlach, M., Dudley, E., Thome, J., et al. (2012). Potential biomarkers in psychiatry: Focus on the cholesterol system. Journal of Cellular and Molecular Medicine, 16(6), 1184–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woods, A. G., Sokolowska, I., Yakubu, R., Butkiewicz, M., LaFleur, M., Talbot, C., et al. (2011). Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.

    Google Scholar 

  24. Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3(104), ra3.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, G., Spellman, D. S., Skolnik, E. Y., & Neubert, T. A. (2006). Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). Journal of Proteome Research, 5(3), 581–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rinschen, M. M., Yu, M. J., Wang, G., Boja, E. S., Hoffert, J. D., Pisitkun, T., et al. (2010). Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3882–3887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cantin, G. T., Venable, J. D., Cociorva, D., & Yates 3rd, J. R. (2006). Quantitative phosphoproteomic analysis of the tumor necrosis factor pathway. Journal of Proteome Research, 5(1), 127–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  CAS  PubMed  Google Scholar 

  29. Pan, C., Kumar, C., Bohl, S., Klingmueller, U., & Mann, M. (2009). Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Molecular & Cellular Proteomics, 8(3), 443–450.

    Article  CAS  Google Scholar 

  30. Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.

    Article  CAS  PubMed  Google Scholar 

  31. Malik, R., Dulla, K., Nigg, E. A., & Korner, R. (2010). From proteome lists to biological impact–tools and strategies for the analysis of large MS data sets. Proteomics, 10(6), 1270–1283.

    Article  CAS  PubMed  Google Scholar 

  32. Finkel, T. (2011). Signal transduction by reactive oxygen species. The Journal of Cell Biology, 194(1), 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hill, B. G., Dranka, B. P., Bailey, S. M., Lancaster Jr., J. R., & Darley-Usmar, V. M. (2010). What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. The Journal of Biological Chemistry, 285(26), 19699–19704.

    Google Scholar 

  34. Higdon, A., Diers, A. R., Oh, J. Y., Landar, A., & Darley-Usmar, V. M. (2012). Cell signalling by reactive lipid species: New concepts and molecular mechanisms. The Biochemical Journal, 442(3), 453–464.

    Article  CAS  PubMed  Google Scholar 

  35. Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87(1), 315–424.

    Article  CAS  PubMed  Google Scholar 

  36. Apweiler, R., Hermjakob, H., & Sharon, N. (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochimica et Biophysica Acta, 1473(1), 4–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kornfeld, R., & Kornfeld, S. (1985). Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry, 54, 631–664.

    Article  CAS  PubMed  Google Scholar 

  38. Stanley, P. (2011). Golgi glycosylation. Cold Spring Harbor Perspectives in Biology, 3(4), a005199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Halim, A., Brinkmalm, G., Ruetschi, U., Westman-Brinkmalm, A., Portelius, E., Zetterberg, H., et al. (2011). Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 11848–11853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steentoft, C., Vakhrushev, S. Y., Vester-Christensen, M. B., Schjoldager, K. T., Kong, Y., Bennett, E. P., et al. (2011). Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nature Methods, 8(11), 977–982.

    Article  CAS  PubMed  Google Scholar 

  41. Spiro, R. G. (1969). Characterization and quantitative determination of the hydroxylysine-linked carbohydrate units of several collagens. The Journal of Biological Chemistry, 244(4), 602–612.

    Article  CAS  PubMed  Google Scholar 

  42. Spiro, R. G. (2002). Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12(4), 43R–56R.

    Article  CAS  PubMed  Google Scholar 

  43. Reis, C. A., Osorio, H., Silva, L., Gomes, C., & David, L. (2010). Alterations in glycosylation as biomarkers for cancer detection. Journal of Clinical Pathology, 63(4), 322–329.

    Article  CAS  PubMed  Google Scholar 

  44. Aggarwal, S. (2010). What’s fueling the biotech engine-2009-2010. Nature Biotechnology, 28(11), 1165–1171.

    Article  CAS  PubMed  Google Scholar 

  45. Hunt, J. V., Dean, R. T., & Wolff, S. P. (1988). Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. The Biochemical Journal, 256(1), 205–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, M. A., Richey, P. L., Taneda, S., Kutty, R. K., Sayre, L. M., Monnier, V. M., et al. (1994). Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Annals of the New York Academy of Sciences, 738, 447–454.

    Article  Google Scholar 

  47. Elsholz, A. K., Turgay, K., Michalik, S., Hessling, B., Gronau, K., Oertel, D., et al. (2012). Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7451–7456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laub, M. T., & Goulian, M. (2007). Specificity in two-component signal transduction pathways. Annual Review of Genetics, 41, 121–145.

    Article  CAS  PubMed  Google Scholar 

  49. Barford, D. (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends in Biochemical Sciences, 21(11), 407–412.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Z. Y. (2002). Protein tyrosine phosphatases: Structure and function, substrate specificity, and inhibitor development. Annual Review of Pharmacology and Toxicology, 42, 209–234.

    Article  CAS  PubMed  Google Scholar 

  51. Johnson, L. N., & Barford, D. (1993). The effects of phosphorylation on the structure and function of proteins. Annual Review of Biophysics and Biomolecular Structure, 22, 199–232.

    Article  CAS  PubMed  Google Scholar 

  52. Hunter, T. (2007). The age of crosstalk: Phosphorylation, ubiquitination, and beyond. Molecular Cell, 28(5), 730–738.

    Article  CAS  PubMed  Google Scholar 

  53. Braconi Quintaje, S., & Orchard, S. (2008). The annotation of both human and mouse kinomes in UniProtKB/Swiss-Prot: One small step in manual annotation, one giant leap for full comprehension of genomes. Molecular & Cellular Proteomics, 7(8), 1409–1419.

    Article  CAS  Google Scholar 

  54. Jackson, M. D., & Denu, J. M. (2001). Molecular reactions of protein phosphatases–insights from structure and chemistry. Chemical Reviews, 101(8), 2313–2340.

    Article  CAS  PubMed  Google Scholar 

  55. Guan, K. L., & Dixon, J. E. (1991). Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. The Journal of Biological Chemistry, 266(26), 17026–17030.

    Article  CAS  PubMed  Google Scholar 

  56. Paik, W. K., Paik, D. C., & Kim, S. (2007). Historical review: The field of protein methylation. Trends in Biochemical Sciences, 32(3), 146–152.

    Article  CAS  PubMed  Google Scholar 

  57. Ishikawa, Y., & Melville, D. B. (1970). The enzymatic alpha-N-methylation of histidine. The Journal of Biological Chemistry, 245(22), 5967–5973.

    Article  CAS  PubMed  Google Scholar 

  58. Bedford, M. T., & Clarke, S. G. (2009). Protein arginine methylation in mammals: Who, what, and why. Molecular Cell, 33(1), 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, C., Leffler, S., Thompson, D. H., & Hrycyna, C. A. (2005). A general fluorescence-based coupled assay for S-adenosylmethionine-dependent methyltransferases. Biochemical and Biophysical Research Communications, 331(1), 351–356.

    Article  CAS  PubMed  Google Scholar 

  60. Erce, M. A., Pang, C. N., Hart-Smith, G., & Wilkins, M. R. (2012). The methylproteome and the intracellular methylation network. Proteomics, 12(4–5), 564–586.

    Article  CAS  PubMed  Google Scholar 

  61. Darwanto, A., Curtis, M. P., Schrag, M., Kirsch, W., Liu, P., Xu, G., et al. (2010). A modified “cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. The Journal of Biological Chemistry, 285(28), 21868–21876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haglund, K., & Dikic, I. (2005). Ubiquitylation and cell signaling. The EMBO Journal, 24(19), 3353–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: Structures, functions, mechanisms. Biochimica et Biophysica Acta, 1695(1–3), 55–72.

    Article  CAS  PubMed  Google Scholar 

  64. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786.

    Article  CAS  PubMed  Google Scholar 

  65. Bhoj, V. G., & Chen, Z. J. (2009). Ubiquitylation in innate and adaptive immunity. Nature, 458(7237), 430–437.

    Article  CAS  PubMed  Google Scholar 

  66. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298(5600), 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  67. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., et al. (2004). Protein tyrosine phosphatases in the human genome. Cell, 117(6), 699–711.

    Article  CAS  PubMed  Google Scholar 

  68. Shi, Y. (2009). Serine/threonine phosphatases: Mechanism through structure. Cell, 139(3), 468–484.

    Article  CAS  PubMed  Google Scholar 

  69. Danielsen, J. M., Sylvestersen, K. B., Bekker-Jensen, S., Szklarczyk, D., Poulsen, J. W., Horn, H., et al. (2011). Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Molecular & Cellular Proteomics, 10(3), M110 003590.

    Article  CAS  Google Scholar 

  70. Jin, L., Pahuja, K. B., Wickliffe, K. E., Gorur, A., Baumgartel, C., Schekman, R., et al. (2012). Ubiquitin-dependent regulation of COPII coat size and function. Nature, 482(7386), 495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.

    Article  CAS  PubMed  Google Scholar 

  72. Motegi, A., Liaw, H. J., Lee, K. Y., Roest, H. P., Maas, A., Wu, X., et al. (2008). Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12411–12416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science, 327(5968), 1000–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R., & Thompson, C. B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 324(5930), 1076–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ganesan, A., Nolan, L., Crabb, S. J., & Packham, G. (2009). Epigenetic therapy: Histone acetylation, DNA methylation and anti-cancer drug discovery. Current Cancer Drug Targets, 9(8), 963–981.

    Article  CAS  PubMed  Google Scholar 

  76. Li, G., & Reinberg, D. (2011). Chromatin higher-order structures and gene regulation. Current Opinion in Genetics & Development, 21(2), 175–186.

    Article  CAS  Google Scholar 

  77. Khan, S. N., & Khan, A. U. (2010). Role of histone acetylation in cell physiology and diseases: An update. Clinica Chimica Acta, 411(19–20), 1401–1411.

    Article  CAS  Google Scholar 

  78. Sato, N., Maitra, A., Fukushima, N., van Heek, N. T., Matsubayashi, H., Iacobuzio-Donahue, C. A., et al. (2003). Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Research, 63(14), 4158–4166.

    CAS  PubMed  Google Scholar 

  79. Balasubramanyam, K., Varier, R. A., Altaf, M., Swaminathan, V., Siddappa, N. B., Ranga, U., et al. (2004). Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. The Journal of Biological Chemistry, 279(49), 51163–51171.

    Article  CAS  PubMed  Google Scholar 

  80. Aggarwal, S., Ichikawa, H., Takada, Y., Sandur, S. K., Shishodia, S., & Aggarwal, B. B. (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Molecular Pharmacology, 69(1), 195–206.

    Article  CAS  PubMed  Google Scholar 

  81. Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942), 834–840.

    Article  CAS  PubMed  Google Scholar 

  82. Plazas-Mayorca, M. D., Bloom, J. S., Zeissler, U., Leroy, G., Young, N. L., DiMaggio, P. A., et al. (2010). Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown. Molecular BioSystems, 6(9), 1719–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sokolowska, I., Dorobantu, C., Woods, A. G., Macovei, A., Branza-Nichita, N., & Darie, C. C. (2012). Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Science, 10(1), 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sokolowska, I., Ngounou Wetie, A. G., Wormwood, K., Michel, T. M., Thome, J., Darie, C. C., et al. (2015). The potential of biomarkers in psychiatry. Journal of Neural Transmission, 122(1), 9–18.

    Article  CAS  Google Scholar 

  85. Woods, A. G., Ngounou Wetie, A. G., Sokolowska, I., Russell, S., Ryan, J. P., Michel, T. M., et al. (2013). Mass spectrometry as a tool for studying autism spectrum disorder. Journal of Molecular Psychiatry, 1, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Garcia, B. A. (2010). What does the future hold for top down mass spectrometry? Journal of the American Society for Mass Spectrometry, 21(2), 193–202.

    Article  CAS  PubMed  Google Scholar 

  87. Cannon, J., Lohnes, K., Wynne, C., Wang, Y., Edwards, N., & Fenselau, C. (2010). High-throughput middle-down analysis using an orbitrap. Journal of Proteome Research, 9(8), 3886–3890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Picotti, P., & Aebersold, R. (2012). Selected reaction monitoring-based proteomics: Workflows, potential, pitfalls and future directions. Nature Methods, 9(6), 555–566.

    Article  CAS  PubMed  Google Scholar 

  89. Lehmann, W. D., Kruger, R., Salek, M., Hung, C. W., Wolschin, F., & Weckwerth, W. (2007). Neutral loss-based phosphopeptide recognition: A collection of caveats. Journal of Proteome Research, 6(7), 2866–2873.

    Article  CAS  PubMed  Google Scholar 

  90. Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J., & Hunt, D. F. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9528–9533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kelleher, N. L., Zubarev, R. A., Bush, K., Furie, B., Furie, B. C., McLafferty, F. W., et al. (1999). Localization of labile posttranslational modifications by electron capture dissociation: The case of gamma-carboxyglutamic acid. Analytical Chemistry, 71(19), 4250–4253.

    Article  CAS  PubMed  Google Scholar 

  92. Good, D. M., Wirtala, M., McAlister, G. C., & Coon, J. J. (2007). Performance characteristics of electron transfer dissociation mass spectrometry. Molecular & Cellular Proteomics, 6(11), 1942–1951.

    Article  CAS  Google Scholar 

  93. Choudhary, C., & Mann, M. (2010). Decoding signalling networks by mass spectrometry-based proteomics. Nature Reviews. Molecular Cell Biology, 11(6), 427–439.

    Article  CAS  PubMed  Google Scholar 

  94. Jensen, O. N. (2006). Interpreting the protein language using proteomics. Nature Reviews. Molecular Cell Biology, 7(6), 391–403.

    Article  CAS  PubMed  Google Scholar 

  95. Knight, Z. A., Schilling, B., Row, R. H., Kenski, D. M., Gibson, B. W., & Shokat, K. M. (2003). Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nature Biotechnology, 21(9), 1047–1054.

    Article  CAS  PubMed  Google Scholar 

  96. Oda, Y., Nagasu, T., & Chait, B. T. (2001). Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnology, 19(4), 379–382.

    Article  CAS  PubMed  Google Scholar 

  97. Wells, L., Vosseller, K., Cole, R. N., Cronshaw, J. M., Matunis, M. J., & Hart, G. W. (2002). Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Molecular & Cellular Proteomics, 1(10), 791–804.

    Article  CAS  Google Scholar 

  98. Li, W., Backlund, P. S., Boykins, R. A., Wang, G., & Chen, H. C. (2003). Susceptibility of the hydroxyl groups in serine and threonine to beta-elimination/Michael addition under commonly used moderately high-temperature conditions. Analytical Biochemistry, 323(1), 94–102.

    Article  CAS  PubMed  Google Scholar 

  99. Dephoure, N., Zhou, C., Villen, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., et al. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10762–10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan, C. S., Pasculescu, A., Lim, W. A., Pawson, T., Bader, G. D., & Linding, R. (2009). Positive selection of tyrosine loss in metazoan evolution. Science, 325(5948), 1686–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, K., Yau, P. M., Chandrasekhar, B., New, R., Kondrat, R., Imai, B. S., et al. (2004). Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: An application for determining lysine 9 acetylation and methylation of histone H3. Proteomics, 4(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  102. Toda, T., Nakamura, M., Morisawa, H., Hirota, M., Nishigaki, R., & Yoshimi, Y. (2010). Proteomic approaches to oxidative protein modifications implicated in the mechanism of aging. Geriatrics & Gerontology International, 10(Suppl 1), S25–S31.

    Article  Google Scholar 

  103. Lapko, V. N., Smith, D. L., & Smith, J. B. (2000). Identification of an artifact in the mass spectrometry of proteins derivatized with iodoacetamide. Journal of Mass Spectrometry, 35(4), 572–575.

    Article  CAS  PubMed  Google Scholar 

  104. Lundell, N., & Schreitmuller, T. (1999). Sample preparation for peptide mapping–a pharmaceutical quality-control perspective. Analytical Biochemistry, 266(1), 31–47.

    Article  CAS  PubMed  Google Scholar 

  105. Windsor, W. T., Syto, R., Tsarbopoulos, A., Zhang, R., Durkin, J., Baldwin, S., et al. (1993). Disulfide bond assignments and secondary structure analysis of human and murine interleukin 10. Biochemistry, 32(34), 8807–8815.

    Article  CAS  PubMed  Google Scholar 

  106. Yang, Z., & Attygalle, A. B. (2007). LC/MS characterization of undesired products formed during iodoacetamide derivatization of sulfhydryl groups of peptides. Journal of Mass Spectrometry, 42(2), 233–243.

    Article  CAS  PubMed  Google Scholar 

  107. Aslebagh, R., Pfeffer, B. A., Fliesler, S. J., & Darie, C. C. (2016). Mass spectrometry-based proteomics of oxidative stress: Identification of 4-hydroxy-2-nonenal (HNE) adducts of amino acids using lysozyme and bovine serum albumin as model proteins. Electrophoresis, 37(20), 2615–2623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Darie, C. C., Biniossek, M. L., Jovine, L., Litscher, E. S., & Wassarman, P. M. (2004). Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry, 43(23), 7459–7478.

    Article  CAS  PubMed  Google Scholar 

  109. Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2012). Automatic determination of disulfide bridges in proteins. Journal of Laboratory Automation, 17(6), 408–416.

    Article  CAS  PubMed  Google Scholar 

  110. Spellman, D. S., Deinhardt, K., Darie, C. C., Chao, M. V., & Neubert, T. A. (2008). Stable isotopic labeling by amino acids in cultured primary neurons: Application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Molecular & Cellular Proteomics, 7(6), 1067–1076.

    Article  CAS  Google Scholar 

  111. Wuhrer, M., Catalina, M. I., Deelder, A. M., & Hokke, C. H. (2007). Glycoproteomics based on tandem mass spectrometry of glycopeptides. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 849(1–2), 115–128.

    Article  CAS  PubMed  Google Scholar 

  112. Sokolowska, I., Ngounou Wetie, A. G., Roy, U., Woods, A. G., & Darie, C. C. (2013). Mass spectrometry investigation of glycosylation on tche NXS/T sites in recombinant glycoproteins. Biochimica et Biophysica Acta, 1834(8), 1474–1483.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the past and current lab members for the friendly work environment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roshanak Aslebagh or Costel C. Darie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslebagh, R., Wormwood, K.L., Channaveerappa, D., Wetie, A.G.N., Woods, A.G., Darie, C.C. (2019). Identification of Posttranslational Modifications (PTMs) of Proteins by Mass Spectrometry. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_11

Download citation

Publish with us

Policies and ethics