Skip to main content

How Does the Use of Non-Host Plants Affect Arbuscular Mycorrhizal Communities and Levels and Nature of Glomalin in Crop Rotation Systems Established in Acid Andisols?

  • Chapter
  • First Online:
Mycorrhizal Fungi in South America

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Acidity and P deficiency are the two most serious limitations of agricultural soil productivity worldwide especially in developing countries where food production is crucial. The main negative effect is assigned to free Al where water and nutrient acquisition are severely restricted. In Chile, the acid soils, like Andisols and Ultisols, account for approximately 43% of agricultural land being cereals the main crops produced in rotation with legumes, rapeseed and lupine. These soils have high P-adsorption capacity and high Al saturation. Arbuscular mycorrhiza (AM) is a widespread symbiosis that helps plants to acquire nutrients being the most important the increase in P absorption. In addition, it has been recently suggested that AM fungi may promote Al resistance to their plant hosts through: a) the increase of root exudation of short chain organic anions with chelant capacity for Al, excluding Al at cell level; b) the increase on P root absorption and consequently increasing P/Al ratio; and c) the release of glomalin. Therefore, AM appear to confer higher Al tolerance and higher P efficiency to host plants. Nevertheless, some species belonging to these families are used by farmers in rotation systems and scarce information have been reported related to the negative effects on AM fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol Biochem 43: 2427–2431

    Article  CAS  Google Scholar 

  • Aguilera P, Larsen J, Borie F et al (2018) New evidences on the contribution of arbuscular mycorrhizal fungi inducing Al tolerance in wheat. Rhizosphere 5: 43–50

    Article  Google Scholar 

  • Aguilera P, Marín C, Oehl F, Godoy R, Borie F, Cornejo P (2017) Selection of aluminum tolerant cereal genotypes strongly influences the arbuscular mycorrhizal fungal communities in an acidic Andosol. Agric Ecosyst Environm 246: 86–93

    Article  CAS  Google Scholar 

  • Aguilera P (2014) Diversity of arbuscular mycorrhizal fungi and their incidence in aluminum tolerance of Triticum aestivum L. growing in acidic soils with phytotoxic aluminum levels Doctoral Thesis, Universidad de La Frontera, 150 p

    Google Scholar 

  • Aguilera P, Cornejo P, Borie F, Barea JM, von Baer E, Oehl F (2014) Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an Andosol with high aluminum level. Agr Ecosyst Environ 186: 178–184

    Article  CAS  Google Scholar 

  • Araújo PJ, Quiquampoix H, Matumoto-Pintro PT, Staunton S (2015) Glomalin-related soil protein in French temperate forest soils: interference in the Bradford assay caused by co-extracted humic substances. Eur J Soil Sci 66: 311–319

    Article  Google Scholar 

  • Arihara J, Karasawa T (2000) Effect of previous crops in arbuscular mycorrhizal formation on growth of succeeding maize. Soil Sci Plant Nut 46: 43–51

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview. Mycorrhiza 6: 457–464

    Article  Google Scholar 

  • Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. J Soil Sci Plant Nut 8: 9–18

    Google Scholar 

  • Borie F, Rubio R, Curaqueo G, Cornejo P (2010) Arbuscular mycorrhizae in agricultural and forests ecosystems in Chile. J Soil Sci Plant Nut 10: 185–206

    Google Scholar 

  • Bullock D (1992) Crop rotation. Crit Rev Plant Sci 11: 309–326

    Article  Google Scholar 

  • Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320: 37–77

    Article  CAS  Google Scholar 

  • Castillo C, Borie F, Oehl F, Sieverding E (2016) Arbuscular mycorrhizal fungal biodiversity: prospecting in Southern- Central Zone of Chile. A review. J Soil Sci Plant Nut 16: 400–422

    Google Scholar 

  • Castillo C, Rubio R, Borie F, Sieverding E (2010) Diversity of arbuscular fungi in horticultural production systems in Souhtern Chile. J Soil Sci Plant Nut 10:407–413

    Article  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig M, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406: 154–160

    Article  CAS  Google Scholar 

  • Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as survival strategy of arbuscular mycorrhizal fungi in copper-polluted environments. Soil Biol Biochem 57: 925–928

    Article  CAS  Google Scholar 

  • Cumming J, Ning J (2003) Arbuscular mycorrhizal fungi enhance aluminum resistance of broomsedge (Andropogon virginicus L). J Exp Bot 54: 1447–1459

    Article  CAS  Google Scholar 

  • Driver J, Holben W, Rillig M (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37: 101–106

    Article  CAS  Google Scholar 

  • Ferrufino A, Smyth T, Israel D, Carter E (2000) Root elongation of soybean genotypes in response to acidity by constraints in a subsurface solution compartment. Crop Sci 40:413–421

    Article  CAS  Google Scholar 

  • Fokom R, Adamou S, Teugwa MC, Begoude Boyoguenob AD, Nanaa WL, Ngonkeu MEL, Tchameni NS, Nwaga D, Tsala Ndzomo G, Amvam Zollo PH (2012). Glomalin-related soil protein, carbon, nitrogen, and soil aggregate stability as affected by land use variation in the humid forest zone of South Cameroon. Soil Till Res126: 69–75

    Article  Google Scholar 

  • Guillespie A, Farrel L, Walley F, Ross A, Leinweber P, Eckhardt K, Regier T, Blyth R (2011) Glomalin-related soil protein contains non-mycorrhizal related heat stable proteins, lipids and humic materials. Soil Biol Biochem 43: 766–777

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root- induced chemical changes: a review. Plant Soil 237: 173–195

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders I R, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12: 225–234

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders R, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13(4): 1164–1176

    Article  Google Scholar 

  • Javaid A (2007) Allellophatic interactions in mycorrhizal associations. Allellophaty J, 20: 29–42.

    Google Scholar 

  • Kabir Z (2005) Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci 85: 23–29

    Article  Google Scholar 

  • Kanerva S, Smolander A, Kitunen V, Ketola RA, Kotiaho T (2013) Comparison of extractants and applicability of MALDI-TOF- MS in the analysis of soil proteinaceous materials from different types of soil. Organic Geochem 56: 1–9

    Article  CAS  Google Scholar 

  • Karasawa T, Kasahara Y, Takebe M (2001) Variable response of growth and arbuscular mycorrhizal causing by fluctuation in the populations of indigenous arbuscular mycorrizal fungi. Soil Biol and Biochem 34: 851–857

    Article  Google Scholar 

  • Karasawa T, Kasahara Y, Takebe M (2002) Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biol Biochem 34(6): 851–857

    Article  CAS  Google Scholar 

  • Kochian L, Piñeros M, Hoekenga O (2005) How do crop plants tolerate acid soils?. Mechanisms of aluminum tolerance and phosphorus efficiency. Ann Rev Plant Biol 55: 459–493

    Article  Google Scholar 

  • Klironomos J, Kendrick W (1996) Palability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol Fert Soils 21: 43–52

    Article  Google Scholar 

  • Koide R, Peoples M (2013) Behavior of Bradford-reactive substances is consistent with predictions for glomalin. Appl Soil Ecol 63: 8–14

    Article  Google Scholar 

  • Lambers H, Shane W, Cramer M, Pearse S, Veneklaas E (2006) Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann Bot 98: 693–213

    Article  Google Scholar 

  • Lambers H, Teste F (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do mycorrhizal species at both extremes of plant availability play the same play. Plant Cell Environ 36: 1911–1919

    PubMed  Google Scholar 

  • Lavaud C, Voutquenne L, Bal P, Pouny I (2000) Saponins from Chenopodium album. Fitoterapia 71: 338–340

    Article  CAS  Google Scholar 

  • Leake J, Jhonson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Netwoks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agrosystem functioning. Can J Bot 82: 1016–1045

    Article  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui A (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123: 4–15

    Article  CAS  Google Scholar 

  • Lovelock C, Right S, Clark D, Ruess R (2004) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92: 278–287

    Article  CAS  Google Scholar 

  • Lupwayi N, Rice W, Clayton G (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30: 1733–1741

    Article  CAS  Google Scholar 

  • Meier S, Borie F, Curaqueo G, Bolan N, Cornejo P (2012) Effects of arbuscular mycorrhizal inoculation on methallophyte and agricultural plants growing at increasing copper levels. Appl Soil Ecol 61: 280–287

    Article  Google Scholar 

  • Miransari M (2011) Hiperaccumulators, arbuscular mycorrhizal fungal and stress of heavy metals. Biothec Adv 29: 645–653

    Article  CAS  Google Scholar 

  • Navarro-Noya YE, Gómez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suárez-Arriaga MC, Valenzuela-Encinas C, Jiménez-Bueno N, Verhulst N, Govaerts B, Dendooven L (2013) Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem 65:86–95

    Article  CAS  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42: 724–738

    Article  CAS  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94: 778–790

    Article  Google Scholar 

  • Potsma-Blaauw M, de Goede R, Bloem J, Faber J, Brussaard L (2010) Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91: 460–463

    Article  Google Scholar 

  • Purin S, Rillig M (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia 51: 123–130

    Article  CAS  Google Scholar 

  • Qiang-Sheng W, Ming-Qin C, Ying-Ning Z, Xin Hua H (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Nature DOI:https://doi.org/10.1038/srep05823.

  • Richardson A, Lynch E, Jonathan P, Delhaize E, Smith F, Smith S, Harvey P, Ryan M, Veneklaas E, Lambers H, Oberson A, Culbernor R, Simpon R (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349: 121–156

    Article  CAS  Google Scholar 

  • Rillig M, Mummey D (2006) Mycorrhizas and soil structure. New Phytol 171: 41–53

    Article  CAS  Google Scholar 

  • Rillig M (2004) Arbuscular mycorrhizae, glomalin and soil aggregation. Can J Soil Sci 84: 355–363

    Article  Google Scholar 

  • Rillig M, Ramsey P, Morris S, Paul E (2003). Glomalin, an arbuscular mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253: 293–299

    Article  CAS  Google Scholar 

  • Rosier C, Hoye A, Rillig M (2006) Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem 38: 2205–2211

    Article  CAS  Google Scholar 

  • Ryan P, Delhaize E, Jones L (2001) Function and mechanisms of organic anion exudation from plant roots. Annual Review of Plant Physiology Plant Molecular Biology 52: 527–560

    Article  CAS  Google Scholar 

  • Schindler F, Mercer E, Rice J (2007) Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 39: 320–329

    Article  CAS  Google Scholar 

  • Schreiner R, Koide R (1993) Antifungal compounds from the root of mycothrophic and non-mycothrophic plant species. New Phytol 123: 99–105

    Article  CAS  Google Scholar 

  • Seguel A, Rubio R, Carrillo R, Borie F (2008) Levels of glomalin and their relation with soil chemical and soil and biological soil characteristics in a relict of native forest of Southern Chile. Bosque 29: 11–22

    Article  Google Scholar 

  • Seguel A, Cumming J, Klug-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23: 167–183

    Article  CAS  Google Scholar 

  • Seguel A, Cumming J, Cornejo P, Borie F (2016) Aluminum tolerance of wheat cultivars in a non-limed and limed Andisol. Appl Soil Ecol 108: 228–237

    Article  Google Scholar 

  • Seguel A, Cornejo, Ramos A, von Baer E, Cumming J, Borie F (2017) Phosphorus acquisition by three wheat cultivars contrasting in aluminum tolerance growing in an aluminum-rich Andisol. Crop Pasture Sci 68: 315–316

    Article  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Cambridge, UK: Academic Press.

    Google Scholar 

  • Smith S, Smith F (2013) How useful is the mutualism-parasitism continuum of arbuscular mycorrhizas functioning?. Plant Soil 349: 121–156

    Google Scholar 

  • Smith R, Gross K, Robertson G (2008) Effects on crop diversity on agroecosystem function. Ecosystems 11: 355–366

    Article  Google Scholar 

  • Tiemann L, Grandy A, Atkinson, Marin E, McDaniel M (2015) Crop rotational diversity enhances belowground communities and function in an agroecosystem. Ecol Lett 18: 761–771

    Article  CAS  Google Scholar 

  • Torrecillas E, Alguacil M, Roldan A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78: 6180–6186

    Article  CAS  Google Scholar 

  • Treseder K, Turner K (2007) Glomalin in ecosystems. Soil Science Society of America Journal 71: 1257–1266

    Article  CAS  Google Scholar 

  • Valetti L, Iriarte L, Fabra A (2016) Effect of previous cropping of rapeseed (Brassica napus L) on soybean (Glycine max) root mycorrhization, nodulation and plant growth. Eur J Soil Biol 76: 103–106

    Article  Google Scholar 

  • van der Heijden M, Bardgett R, van Straalen N (2008) The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11: 296–310

    Article  Google Scholar 

  • van der Heijden M, Klironomos J, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72

    Article  Google Scholar 

  • Verbruggen E, Röling W, Gamper H, Kowalchuk G, Verhoef H, van der Heijden M (2010) Positive effects of organic farming on below- groundmutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186: 968–979

    Article  CAS  Google Scholar 

  • Villagarcia M, Thomas E, Carter J (2001) Genotypic rankings for aluminum tolarnace of soybean roots grown in hydroponics and sand cultura. Crop Sci 41: 1499–1507

    Article  Google Scholar 

  • Wang Q, Wu Y, Wang W, Zhong Z, Pei Z, Ren J, Wang H, Zu Y (2014) Spacial variations in concentration, compositions of glomalin related soil protein in poplar plantations in Northeastern China, and possible relations with soil physicochemical properties. The Scientific World Journal Volume 2014, Article ID 160403, 13 pages

    Google Scholar 

  • Wang Q, Wang W, He X (2015) Role and variation of the amount and composition of glomalin in soil properties in farmland and adjacent plantations with reference to a primary forest in North-Eastern China. PLoS One DOI: https://doi.org/10.1371/journal.pone.01 39623. October 2, 2015 (19 pages)

  • Wardle D, Bardgett R, Klironomos J (2004) Ecological linkages between aboveground and belowground biota. Science, 304 (5677): 1629–1633

    Article  CAS  Google Scholar 

  • Wagg C, Franz Bender S, Widmer F (2014) Soil biodiversity and soil community composition determines ecosystem multifunctionality. Pro. Natl Acad. Si USA 111: 5266–5670.

    Article  CAS  Google Scholar 

  • Whiffen L, Midley D, Mc Gee P (2007) Polyphenolic compounds interfere with quantification of protein extracts using the Bradford method. Soil Biol Biochem 39: 691–694

    Article  CAS  Google Scholar 

  • Wright S, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161: 575–586

    Article  CAS  Google Scholar 

  • Wright S, Upadhyaya A (1998) A survey of soils fro aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198: 97–107

    Article  CAS  Google Scholar 

  • Woignier T, Etcheverria P, Borie F (2014) Role of allophanes in the accumulation of glomalin-related soil protein in tropical soils (Martinique, French West Indes) Eur J Soil Sci 65: 531–538

    Article  CAS  Google Scholar 

  • Yin C, Jones L, Peterson D et al (2011) Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol Biochem 42: 2111–2118

    Article  Google Scholar 

  • Zhang J, Tang X, Zhong S (2017) Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests. Nature https://doi.org/10.1038/s41598-017-02486-6

Download references

Acknowledgements

Financial support of FONDECYT 11170641 (P. Aguilera), FONDECYT 1170264 (P. Cornejo), FONDECYT 11160385 (A. Seguel) and FONDECYT 1191551 (F. Borie) Grants from Comisión Nacional Científica y Tecnológica de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Aguilera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilera, P., Borie, F., Seguel, A., Cornejo, P. (2019). How Does the Use of Non-Host Plants Affect Arbuscular Mycorrhizal Communities and Levels and Nature of Glomalin in Crop Rotation Systems Established in Acid Andisols?. In: Pagano, M., Lugo, M. (eds) Mycorrhizal Fungi in South America. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-15228-4_7

Download citation

Publish with us

Policies and ethics