Skip to main content

Ergodic Properties of Quasi-Markovian Generalized Langevin Equations with Configuration Dependent Noise and Non-conservative Force

  • Conference paper
  • First Online:
Stochastic Dynamics Out of Equilibrium (IHPStochDyn 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 282))

Included in the following conference series:

Abstract

We discuss the ergodic properties of quasi-Markovian stochastic differential equations, providing general conditions that ensure existence and uniqueness of a smooth invariant distribution and exponential convergence of the evolution operator in suitably weighted \(L^{\infty }\) spaces, which implies the validity of central limit theorem for the respective solution processes. The main new result is an ergodicity condition for the generalized Langevin equation with configuration-dependent noise and (non-)conservative force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The assumption that configurations are restricted to the torus eliminates several technical complications and is motivated by the frequent applications of GLEs in molecular modelling, where such a formulation is commonly used.

  2. 2.

    In the sense that \(\mathcal {L}\rho = 0\), with \(\mathcal {L}\) being the Liouville operator associated with (4).

  3. 3.

    One easily verifies that this Hamiltonian corresponds to a parametrization of (7) as \({\varvec{M}}=1,~\widetilde{{\varvec{M}}}= \mathrm{diag}(\tilde{m}_{1},\dots ,\tilde{m}_{m}),~V({\varvec{q}}) = U({\varvec{q}}) + \frac{1}{2}\sum _{i=1}^{m} k_{i}{\varvec{q}}^{2},~V_{c}({\varvec{q}},\tilde{{\varvec{q}}}) = \sum _{i=1}^{m} k_{i}{\varvec{q}}\tilde{{\varvec{q}}}_{i},~ V_{h}(\tilde{{\varvec{q}}}) = \frac{1}{2}\sum _{i=1}^{m}k_{i}\tilde{{\varvec{q}}}_{i}^{2}\).

  4. 4.

    A stochastic process \((X(t))_{t\in {\mathbb R}}\) with associated covariance function C is said to be weakly stationary if \({ \mathbb {E}}[X(t)] = { \mathbb {E}}[X(t+s)]=0\) and \(C(0,s)= C(t,t+s)\) for all \(t,s \in {\mathbb R}\). Since Gaussian processes are fully characterized by the mean and covariance function, a Gaussian processes is weakly stationary if and only if it is stationary.

  5. 5.

    The respective proof for \({\varvec{u}}_{2}\) is essentially the same with the only difference that in (83) we need to bound \(||{\varvec{u}}_{2}||_{2}^{2}\) by a term proportional to \(||{\varvec{p}}||^{4}_{2} +||\varvec{g}||_{2}^{4}\) instead of bounding \(u_{2}\) by a term which is proportional to \(||{\varvec{p}}||^{2}_{2} +||{\varvec{g}}||_{2}^{2}\) as we do in the proof for \({\varvec{u}}_{1}\). By choosing \(l=2\) in (84) the remaining steps of the proof are then exactly the same as for \(u_{1}\).

  6. 6.

    The expectation is taken with respect to the Brownian motion \({\varvec{W}}\).

References

  1. Adelman, S., Doll, J.: Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J. Chem. Phys. 64(6), 2375–2388 (1976)

    Article  Google Scholar 

  2. Bhattacharya, R.N.: On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 60(2), 185–201 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carmona, P.: Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths. Stochast. Process. Appl. 117(8), 1076–1092 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ceriotti, M.: GLE4MD. http://gle4md.org

  5. Ceriotti, M., Bussi, G., Parrinello, M.: Langevin equation with colored noise for constant-temperature molecular dynamics simulations. Phys. Rev. Lett. 102(2), 020601 (2009)

    Article  Google Scholar 

  6. Ceriotti, M., Bussi, G., Parrinello, M.: Colored-noise thermostats à la carte. J. Chem. Theory Comput. 6(4), 1170–1180 (2010)

    Article  Google Scholar 

  7. Darve, E., Solomon, J., Kia, A.: Computing generalized Langevin equations and generalized Fokker-Planck equations. Proc. Nat. Acad. Sci. 106(27), 10884–10889 (2009)

    Article  Google Scholar 

  8. Doll, J.D., Dion, D.R.: Generalized Langevin equation approach for atom/solid-surface scattering: numerical techniques for Gaussian generalized Langevin dynamics. J. Chem. Phys. 65(9), 3762–3766 (1976)

    Article  Google Scholar 

  9. Dym, H., McKean, H.P.: Gaussian Processes, Function Theory, and the Inverse Spectral Problem. Courier Corporation (2008)

    Google Scholar 

  10. Eckmann, J.-P., Hairer, M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212(1), 105–164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckmann, J.-P., Pillet, C.-A., Rey-Bellet, L.: Entropy production in nonlinear, thermally driven Hamiltonian systems. J. Stat. Phys. 95(1), 305–331 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckmann, J.-P., Pillet, C.-A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201(3), 657–697 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ford, G., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6(4), 504–515 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Givon, D., Kupferman, R., Hald, O.H.: Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism. Isr. J. Math. 145(1), 221–241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17(6), R55–R127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hairer, M., Mattingly, J.C.: Yet another look at Harris Ergodic theorem for Markov chains. In: Seminar on Stochastic Analysis, Random Fields and Applications VI, vol. 63, pp. 109–117. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Hänggi, P.: Generalized Langevin equations: a useful tool for the perplexed modeller of nonequilibrium fluctuations? In: Lutz, S.-G., Thorsten, P. (eds.) Stochastic Dynamics, pp. 15–22. Springer, Heidelberg (1997)

    Google Scholar 

  18. Harris, T.E.: The existence of stationary measures for certain Markov processes. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 113–124 (1956)

    Google Scholar 

  19. Hohenegger, C., McKinley, S.A.: Fluid-particle dynamics for passive tracers advected by a thermally fluctuating viscoelastic medium. J. Comput. Phys. 340, 688–711 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hörmander, L.: The analysis of linear partial differential operators III. Grundlehren der Mathematischen Wissenschaften [fundamental principles of mathematical sciences], vol. 274 (1985)

    Google Scholar 

  21. Jakišć, V., Pillet, C.-A.: Ergodic properties of the non-Markovian Langevin equation. Lett. Math. Phys. 41(1), 49–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jakšić, V., Pillet, C.-A.: Spectral theory of thermal relaxation. J. Math. Phys. 38(4), 1757–1780 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jakšić, V., Pillet, C.-A.: Ergodic properties of classical dissipative systems I. Acta Math. 181(2), 245–282 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Joubaud, R., Pavliotis, G., Stoltz, G.: Langevin dynamics with space-time periodic nonequilibrium forcing. J. Stat. Phys. 158(1), 1–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kantorovich, L.: Generalized Langevin equation for solids. I. Rigorous derivation and main properties. Phys. Rev. B 78(9), 094304 (2008)

    Google Scholar 

  26. Kliemann, W.: Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15, 690–707 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kupferman, R.: Fractional kinetics in Kac-Zwanzig heat bath models. J. Stat. Phys. 114(1), 291–326 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kupferman, R., Stuart, A., Terry, J., Tupper, P.: Long-term behaviour of large mechanical systems with random initial data. Stoch. Dyn. 2(4), 533–562 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lampo, T.J., Kuwada, N.J., Wiggins, P.A., Spakowitz, A.J.: Physical modeling of chromosome segregation in Escherichia coli reveals impact of force and DNA relaxation. Biophys. J. 108(1), 146–153 (2015)

    Article  Google Scholar 

  30. Lei, H., Baker, N.A., Li, X.: Data-driven parameterization of the generalized Langevin equation. Proc. Nat. Acad. Sci. 113(50), 14183–14188 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Leimkuhler, B., Matthews, C., Stoltz, G.: The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36(1), 13–79 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Lelièvre, T., Stoltz, G.: Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25, 681–880 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Z., Bian, X., Li, X., Karniadakis, G.E.: Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. J. Chem. Phys. 143(24), 243128 (2015)

    Article  Google Scholar 

  34. Li, Z., Lee, H.S., Darve, E., Karniadakis, G.E.: Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: application to polymer melts. J. Chem. Phys. 146(1), 014104 (2017)

    Article  Google Scholar 

  35. Lim, S.H., Wehr, J.: Homogenization for a class of generalized Langevin equations with an application to thermophoresis. J. Stat. Phys. 174, 656–691 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101(2), 185–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes I: criteria for discrete-time chains. Adv. Appl. Probab. 24(3), 542–574 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes II: continuous-time processes and sampled chains. Adv. Appl. Probab. 25(3), 487–517 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer Science & Business Media, Heidelberg (2012)

    Google Scholar 

  40. Mori, H.: A continued-fraction representation of the time-correlation functions. Prog. Theor. Phys. 34(3), 399–416 (1965)

    Article  MathSciNet  Google Scholar 

  41. Morriss, G.P., Evans, D.J.: Statistical Mechanics of Nonequilbrium Liquids. ANU Press, Canberra (2013)

    Google Scholar 

  42. Morrone, J.A., Markland, T.E., Ceriotti, M., Berne, B.: Efficient multiple time scale molecular dynamics: using colored noise thermostats to stabilize resonances. J. Chem. Phys. 134(1), 014103 (2011)

    Article  Google Scholar 

  43. Ness, H., Stella, L., Lorenz, C., Kantorovich, L.: Applications of the generalized Langevin equation: towards a realistic description of the baths. Phys. Rev. B 91(1), 014301 (2015)

    Article  Google Scholar 

  44. Ness, H., Genina, A., Stella, L., Lorenz, C.D., Kantorovich, L.: Nonequilibrium processes from generalized Langevin equations: realistic nanoscale systems connected to two thermal baths. Phys. Rev. B 93(17), 174303 (2016)

    Article  Google Scholar 

  45. Øksendal, B.: Stochastic differential equations. In: Stochastic Differential Equations, pp. 65–84. Springer, Heidelberg (2003)

    Google Scholar 

  46. Ottobre, M., Pavliotis, G.: Asymptotic analysis for the generalized Langevin equation. Nonlinearity 24(5), 1629–1653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pavliotis, G.A.: Stochastic Processes and Applications. Springer, Heidelberg (2016)

    Google Scholar 

  48. Redon, S., Stoltz, G., Trstanova, Z.: Error analysis of modified Langevin dynamics. J. Stat. Phys. 164(4), 735–771 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rey-Bellet, L.: Statistical mechanics of anharmonic lattices. In: Advances in Differential Equations and Mathematical Physics (Birmingham, AL, 2002), vol. 327, pp. 283–293 (2003)

    Google Scholar 

  50. Rey-Bellet, L.: Ergodic properties of Markov processes. In: Open Quantum Systems II. Lecture Notes in Mathematics, vol. 1881, pp. 1–39. Springer, Heidelberg (2006)

    Google Scholar 

  51. Rey-Bellet, L.: Open classical systems. In: Open Quantum Systems II. Lecture Notes in Mathematics, vol. 1881, pp. 41–78. Springer, Heidelberg (2006)

    Google Scholar 

  52. Rey-Bellet, L., Thomas, L.E.: Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Commun. Math. Phys. 225(2), 305–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rudin, W.: Fourier Analysis on Groups. Courier Dover Publications, New York (2017)

    MATH  Google Scholar 

  54. Sachs, M., Leimkuhler, B., Danos, V.: Langevin dynamics with variable coefficients and nonconservative forces: from stationary states to numerical methods. Entropy 19(12), 647 (2017)

    Article  Google Scholar 

  55. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer Science & Business Media, Heidelberg (2012)

    Google Scholar 

  56. Stella, L., Lorenz, C., Kantorovich, L.: Generalized Langevin equation: an efficient approach to nonequilibrium molecular dynamics of open systems. Phys. Rev. B 89(13), 134303 (2014)

    Article  Google Scholar 

  57. Stroock, D.W., Varadhan, S.R.: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (University of California, Berkeley, California, 1970/1971), vol. 3, pp. 333–359 (1972)

    Google Scholar 

  58. Talay, D.: Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Related Fields 8(2), 163–198 (2002)

    MathSciNet  MATH  Google Scholar 

  59. Villani, C.: Hypocoercivity. American Mathematical Society, Providence (2009)

    Book  MATH  Google Scholar 

  60. Wu, X., Brooks, B.R., Vanden-Eijnden, E.: Self-guided Langevin dynamics via generalized Langevin equation. J. Comput. Chem. 37(6), 595–601 (2016)

    Article  Google Scholar 

  61. Zhang, F. (ed.): The Schur Complement and Its Applications. Numerical Methods and Algorithms, vol. 4. Springer Science & Business Media, Heidelberg (2006)

    Google Scholar 

  62. Zwanzig, R.: Memory effects in irreversible thermodynamics. Phys. Rev. 124(4), 983–992 (1961)

    Article  MATH  Google Scholar 

  63. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Greg Pavliotis (Imperial), Jonathan Mattingly (Duke) and Gabriel Stoltz (ENPC) for their generous assistance in providing comments at various stages of this project. In particular, the authors thank Jonathan Mattingly for pointing out the possibility of using Girsanov’s theorem in the proof of Lemma 7. Both authors acknowledge the support of the European Research Council (Rule Project, grant no. 320823). BJL further acknowledges the support of the EPSRC (grant no. EP/P006175/1) during the preparation of this article. The work of MS was supported by the National Science Foundation under grant DMS-1638521 to the Statistical and Applied Mathematical Sciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benedict Leimkuhler or Matthias Sachs .

Editor information

Editors and Affiliations

Appendices

A Auxiliary Material on Linear Algebra

The following Lemma A.1 is repeatedly used in the proofs of Proposition 3 and Lemma 3, as well as in Example 3 to show the positive (semi-)definiteness of symmetric matrices.

Lemma A.1

Let A be a symmetric block structured matrix of the form

$$ {\varvec{A}}:=\begin{pmatrix} {\varvec{A}}_{1,1} &{} {\varvec{A}}_{1,2} \\ {\varvec{A}}_{1,2}^{{T}} &{} {\varvec{A}}_{2,2} \\ \end{pmatrix} \in \mathbb {R}^{n+m \times n+m} $$
  1. (i)

    If \({\varvec{A}}_{2,2}\) is positive definite, then \({\varvec{A}}\) is positive (semi-)definite if and only if

    $$ {\varvec{A}}_{1,1} - {\varvec{A}}_{1,2}{\varvec{A}}_{2,2}^{-1} {\varvec{A}}_{1,2}^{{T}} $$

    is positive (semi-)definite

  2. (ii)

    If \({\varvec{A}}_{1,1}\) is positive definite, then \({\varvec{A}}\) is positive (semi-)definite if and only if

    $$ {\varvec{A}}_{2,2} - {\varvec{A}}_{1,2}^{{T}}{\varvec{A}}_{1,1}^{-1} {\varvec{A}}_{1,2} $$

    is positive (semi-)definite

  3. (iii)

    Let \({\varvec{A}}_{2,2}^{g}\) denote a generalised inverse of \({\varvec{A}}_{2,2}\), i.e., \({\varvec{A}}_{2,2}^{g}\) is a \(m\times m \) matrix which satisfies

    $$ {\varvec{A}}_{2,2}{\varvec{A}}_{2,2}^{g}{\varvec{A}}_{2,2} = {\varvec{A}}_{2,2}. $$

    The matrix \({\varvec{A}}\) is positive semi-definite if and only if the matrices \( {\varvec{A}}_{2,2} \) and \( {{\varvec{A}}_{1,1} - {\varvec{A}}_{1,2}{\varvec{A}}_{2,2}^{g} {\varvec{A}}_{1,2}^{{T}}} \) are positive semi-definite, and

    $$ ({\varvec{I}} - {\varvec{A}}_{2,2} {\varvec{A}}_{2,2}^{g}){\varvec{A}}_{1,2}^{{T}} = \mathbf{0}, $$

    i.e., the span of the column vectors of \({\varvec{A}}_{1,2}\) is contained in the span of the column vectors of \({\varvec{A}}_{1,1}\).

Proof

The statements (i) and (ii) follow from Theorem 1.12 in [61]. Statement (iii) corresponds to Theorem 1.20 in the same reference.    \(\square \)

B Auxiliary Material on Stochastic Analysis

In this section we provide a brief overview of the general framework used in the ergodicity proofs and derivation of convergence rate in Sect. 3. For a comprehensive overview we refer to the review articles [32, 36, 50].

Consider an SDE defined on the domain \({\varOmega _{{\varvec{x}}}}= \mathbb {T}^{n_{1}} \times \mathbb {R}^{n_{2}}, n = n_{1}+n_{2}\in \mathbb {N}\) which is of the form

$$\begin{aligned} \mathrm{d}X = {\varvec{a}}(X) \mathrm{d}t+ {\varvec{b}}(X) \mathrm{d}{\varvec{W}}, ~ X(0) \sim \mu _{0}, \end{aligned}$$
(88)

with smooth coefficients \({\varvec{a}}\in \mathcal {C}^{\infty }( {\varOmega _{{\varvec{x}}}}, {\mathbb R}^{n}), {\varvec{b}}= [{\varvec{b}}_{i}]_{1\le i \le n} \in \mathcal {C}^{\infty }({\varOmega _{{\varvec{x}}}},{\mathbb R}^{n\times n})\), and initial distribution \(\mu _{0}\). In order to simplify the presentation we further assume that the diffusion coefficient \({\varvec{b}}\) is such that the Itô and Stratonovich interpretation of (88) coincide, i.e.,

$$ \nabla \cdot \left( {\varvec{b}}\, {\varvec{b}}^{{T}} \right) - {\varvec{b}}\, \nabla \cdot {\varvec{b}}^{{T}} \equiv \mathbf{0}. $$

Let further \(\mathcal {L}\) denote the associated infinitesimal generator of (88), i.e.,

$$\begin{aligned} \mathcal {L}= {\varvec{a}}(X) \cdot \nabla + {\varvec{b}}(X) : \nabla ^{2}, \end{aligned}$$
(89)

when considered as an operator on the core \(\mathcal {C}^{\infty }({\varOmega _{{\varvec{x}}}},{\mathbb R})\), and let \(\mathcal {L}^{\dagger }\) denote the formal adjoint of \(\mathcal {L}\), i.e., the Fokker-Planck operator associated with the SDE (88). Furthermore, let \(e^{t\mathcal {L}},e^{t\mathcal {L}^{\dagger }}\) denote the associated semigroup operators of \(\mathcal {L}\), and \(\mathcal {L}^{\dagger }\), respectively, i.e.,Footnote 6

$$\begin{aligned} \forall \varphi \in \mathcal {C}^{\infty }({\varOmega _{{\varvec{x}}}},{\mathbb R}) : e^{t\mathcal {L}} \varphi (x) = { \mathbb {E}}[ \varphi (X(t)) \,\vert \,X(0) = x], \end{aligned}$$
(90)

for (Lebesgue-)almost all \(x \in {\mathbb R}^{n}\), and

$$ \int \left( e^{t\mathcal {L}} \varphi \right) (x) \mu _{0}(\mathrm{d}x) = \int \varphi (x) \left( e^{t\mathcal {L}^{\dagger }} \mu _{0}\right) (\mathrm{d}x). $$

Definition 1

For a given function \(\mathcal {K}\in \mathcal {C}^{\infty }({\varOmega _{{\varvec{x}}}}, [1,\infty ))\) which is such that \(\mathcal {K}({\varvec{x}}) \rightarrow \infty \) as \(||{\varvec{x}}||\rightarrow \infty \), define

$$\begin{aligned} ||\varphi ||_{L^{\infty }_{\mathcal {K}}} := \bigg \Vert { \frac{\varphi }{\mathcal {K}}}\bigg \Vert _{\infty }, ~\varphi : {\varOmega _{{\varvec{x}}}}\rightarrow {\mathbb R}~\text {measureable}. \end{aligned}$$
(91)

We denote by

$$\begin{aligned} L^{\infty }_{\mathcal {K}}({\varOmega _{{\varvec{x}}}}) := \left\{ \varphi \text { measurable } :||\varphi ||_{L^{\infty }_{\mathcal {K}}}<\infty \right\} \end{aligned}$$
(92)

the set of measurable functions for which the ratio \(\frac{\varphi }{\mathcal {K}}\) is bounded.

It can be easily verified that \(||\varphi ||_{L^{\infty }_{\mathcal {K}}}\) defines a norm and that \( L^{\infty }_{\mathcal {K}}({\varOmega _{{\varvec{x}}}}) \) equipped with the norm \(||\varphi ||_{L^{\infty }_{\mathcal {K}}} \) can be associated with a Banach space, which we denote by \(\left( L^{\infty }_{\mathcal {K}}({\varOmega _{{\varvec{x}}}}), ||\cdot ||_{L^{\infty }_{\mathcal {K}}} \right) \).

Throughout this article we use Lyapunov function techniques to show (geometric) ergodicity of SDEs of the generic form (88). More specifically, we follow the standard recipe for proofs of exponential convergences of the semigroup operator \(e^{t\mathcal {L}}\) in weighted \(L^{\infty }\) spaces as outlined, e.g., in [32, 36, 38, 50], that is we show that a suitable Lyapunov condition (Assumption B.1) and a minorization condition (Assumption B.2) are satisfied:

Assumption B.1

(Infinitesimal Lyapunov condition). There is a function \(\mathcal {K}\in \mathcal {C}^{\infty }({\varOmega _{{\varvec{x}}}}, [1,\infty ))\) with \(\lim _{\left\| {\varvec{x}}\right\| \rightarrow \infty }\mathcal {K}(x) = \infty \), and real numbers \(a\in (0,\infty ), b \in {\mathbb R}\) such that,

$$\begin{aligned} \mathcal {L} \mathcal {K} \le - a \mathcal {K}+b. \end{aligned}$$
(93)

Assumption B.2

(Minorization condition). For some \(t^{\prime }>0\) there exists a constant \(\eta \in (0,1)\) and a probability measure \(\nu \) such that

$$ \inf _{x\in \mathcal {C}} e^{t^{\prime }\mathcal {L}^{\dagger }}\delta _{x}(\mathrm{d}y) \ge \eta \nu (\mathrm{d}y) $$

where \(\mathcal {C} = \{ x \in {\varOmega _{{\varvec{x}}}}: \; \mathcal {K}(x) \le \mathcal {K}_\mathrm{max} \}\) for some \(\mathcal {K}_\mathrm{max} > 1+ 2b/a,\) where a, b are the same constants as in (93).

If the above assumptions are satisfied, then the following proposition, which follows from the arguments in [32] (see also the other above mentioned references), allows to derive exponential decay estimates in the respective weighted \(L^{\infty }\) space associated with the Lyapunov function \(\mathcal {K}\).

Proposition B.1

(Geometric ergodicity, [32]). Let Assumptions B.1 and B.2 hold. The solution of the SDE (88) admits a unique invariant probability measure \(\pi \) such that

  1. (i)

    there exist positive constant \(\lambda , \widetilde{C}\) so that for any \(\varphi \in L^{\infty }_{\mathcal {K}}({\varOmega _{{\varvec{x}}}})\)

    $$\begin{aligned} \big \Vert { e^{t\mathcal {L}} \varphi -{ \mathbb {E}}_{\pi }\varphi }\big \Vert _{L^{\infty }_{\mathcal {K}}} \le \widetilde{C}e^{-t\lambda } \big \Vert {\varphi - { \mathbb {E}}_{\pi }\varphi }\big \Vert _{L^{\infty }_{\mathcal {K}}}. \end{aligned}$$
    (94)
  2. (ii)
    $$\begin{aligned} \int _{{\varOmega _{{\varvec{x}}}}} \mathcal {K}\mathrm{d}\pi < \infty . \end{aligned}$$
    (95)

If for the solution of (88) the implications of Proposition B.1 hold we also say that the solution X of (88) is geometrically ergodic. In the main body of this article we use Proposition B.1 to derive exponential decay estimates of the form (46) in Theorems 1 to 4. In these theorems Assumption B.1 can be directly shown to hold by explicitly constructing a suitable Lyapunov function \(\mathcal {K}\) satisfying (93) (see Lemmas 1, 3 and 10). A very common way to show Assumption B.2 is by showing (i) that the transition kernel associated with the SDE (88) is smooth as specified in Assumption B.3, and (ii) that the SDE (88) is controllable as specified in Assumption B.4. By virtue Lemma B.1 it then follows that a minorization condition holds.

Assumption B.3

For any \(t>0\) the transition kernel associated with the SDE (88) possesses a density \(p_{t} (x, y)\), i.e.,

$$ \forall \,x \in {\varOmega _{{\varvec{x}}}}:~(e^{t\mathcal {L}^{\dagger }}\delta _{x})(A)= \int _{A} p_{t}(x,y)dy, ~ A \subset {\varOmega _{{\varvec{x}}}}, \; A \text { measurable}. $$

and \(p_{t}(x,y)\) is jointly continuous in \((x,y)\in {\varOmega _{{\varvec{x}}}}\times {\varOmega _{{\varvec{x}}}}\).

Assumption B.4

There is a \(t_{\max }>0\) so that for any \(x^{-}, x^{+} \in {\varOmega _{{\varvec{x}}}}\), there is a \(t>0\), with \(t \le t_{\max }\), so that the control problem

$$\begin{aligned} \begin{aligned} \dot{\tilde{X}}&= {\varvec{a}}(\tilde{X}) + {\varvec{b}}(\tilde{X}) u, \end{aligned} \end{aligned}$$
(96)

subject to

$$ \tilde{X}(0)= x^{-}, \text { and } \tilde{X}(t)=x^{+}, $$

has a smooth solution \(u \in \mathcal {C}^{1}([0,t_{\max }],{\varOmega _{{\varvec{x}}}})\).

Lemma B.1

([36]). If Assumptions B.3 and B.4 are satisfied, then also Assumption B.2 holds.

Assumption B.3 follows directly from hypoellipticity of the operator \(\partial _{t} - \mathcal {L}^{\dagger }\) (see e.g. [47, 50], for a precise definition of hypoellipticity). A common way to establish hypoellipticity of a differential operators is via Hörmander’s theorem ([20], Theorem 22.2.1, on p. 353). The following proposition is an adaption of Hörmander’s theorem to the parabolic differential operator \(\partial _{t} -\mathcal {L}^{\dagger }\):

Proposition B.2

Let \({\varvec{a}}\) and \({\varvec{b}}\) be the drift coefficient and the diffusion coefficient of the SDE (88), respectively. Let \({\varvec{b}}_{0} := {\varvec{a}}\). Iteratively define a collection of vector fields by

$$\begin{aligned} \mathscr {V}_{0} = \{ {\varvec{b}}_{i} : i \ge 1 \}, \mathscr {V}_{k+1} =\mathscr {V}_{k} \cup \{ [{\varvec{v}},{\varvec{b}}_{i}] : {\varvec{v}} \in \mathscr {V}_{k}, 0 \le i \le n\}. \end{aligned}$$
(97)

where

$$ [{\varvec{X}}, {\varvec{Y}}] = (\nabla {\varvec{Y}} ) {\varvec{X}} -( \nabla {\varvec{X}}) {\varvec{Y}}, $$

denotes the commutator of vector fields \({\varvec{X}},{\varvec{Y}} \in \mathcal {C}^{\infty }({\varOmega _{{\varvec{x}}}},{\mathbb R}^{n})\) and \((\nabla {\varvec{X}}),(\nabla {\varvec{Y}})\) their Jacobian matrices. If

$$\begin{aligned} \forall {\varvec{x}}\in \mathbb {R}^{n},~~ \mathrm {lin}\left\{ {\varvec{v}}({\varvec{x}}) : {\varvec{v}} \in \bigcup _{k \in \mathbb {N}}\mathscr {V}_{k} \right\} = \mathbb {R}^{n}, \end{aligned}$$
(98)

we say that the SDE (88) satisfies the parabolic Hörmander condition, and it follows that the operator \(\partial _{t} - \mathcal {L}^{\dagger }\) is hypoelliptic.

We use Lemma B.1 in the proof of Lemma 4 in Theorem 2. For some instances of (20) it is not easy to construct a suitable control u such that Assumption B.4 is satisfied. In these cases we either show a minorization condition by explicitly constructing the minorizing measure \(\nu \) in Assumption B.2 if the right hand side of (20) can be decomposed into a linear and a bounded part (see Theorem 1), or by inferring the existence of a suitable minorizing measure by showing that the support of the SDE under consideration is equivalent to the support of another SDE satisfying a minorization condition via Girsanov’s theorem (Lemmas 5 and 7). Girsanov’s theorem provides conditions under which the path measures of two Itô processes are mutually absolutely continuous, which in particular implies that at any time \(t \ge 0\) the laws of these Itô processes are equivalent. We will use Girsanov’s theorem in Sect. 3 in order to prove the minorization condition for GLEs which in a Markovian representation possess coefficients which depend on the configurational variable. Here we provide a version of Girsanov’s theorem which is adapted to Itô-diffusion processes.

Proposition B.3

(Girsanov’s theorem, [45]). Consider the two Itô diffusion processes

$$\begin{aligned} \mathrm{d}X(t)&= {\varvec{a}}_{x}(X) \mathrm{d}t + {\varvec{b}}(X)\mathrm{d}{\varvec{W}}(t); ~ X(0) = x_{0}, \end{aligned}$$
(99)
$$\begin{aligned} \mathrm{d}Y(t)&= {\varvec{a}}_{y}(Y) \mathrm{d}t + {\varvec{b}}(Y)\mathrm{d}{\varvec{W}}(t); ~ Y(0) = x_{0}, \end{aligned}$$
(100)

where \( x_{0} \in {\varOmega _{{\varvec{x}}}}\), \({\varvec{W}}\) is a standard Wiener process in \({\mathbb R}^{n}\), and \({\varvec{a}}_{x},{\varvec{a}}_{y} : {\varOmega _{{\varvec{x}}}}\rightarrow {\mathbb R}^{n}\) and \({\varvec{b}}: {\varOmega _{{\varvec{x}}}}\rightarrow {\mathbb R}^{n \times m}, m \in \mathbb {N}\), are such that there exist unique strong solutions X, Y for (99) and (100), respectively. If there is a function \({\varvec{u}} \in \mathcal {C}({\varOmega _{{\varvec{x}}}},{\mathbb R}^{n})\) such that

$$ {\varvec{a}}_{x} -{\varvec{a}}_{y} = {\varvec{b}}{\varvec{u}} $$

and \({\varvec{u}} \) satisfies Novikov’s condition

$$\begin{aligned} { \mathbb {E}}\left[ \exp \left( \frac{1}{2} \int _{0}^{T} ||{\varvec{u}} (X(t))||_{2}^{2} \mathrm{d}t \right) \right] < \infty . \end{aligned}$$
(101)

then the path measures of X and Y on any finite time interval are equivalent. In particular, the support of the law of X(t) and the support of the law of Y(t) coincide for any \(t>0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leimkuhler, B., Sachs, M. (2019). Ergodic Properties of Quasi-Markovian Generalized Langevin Equations with Configuration Dependent Noise and Non-conservative Force. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_8

Download citation

Publish with us

Policies and ethics