Skip to main content

The Pharmacophore Concept and Its Applications in Computer-Aided Drug Design

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 110

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 110))

Abstract

Pharmacophore-based techniques currently are an integral part of many computer-aided drug design workflows and have been successfully and extensively applied for tasks such as virtual screening, de novo design, and lead optimization. Pharmacophore models can be derived both in a receptor-based and in a ligand-based manner, and provide an abstract description of essential non-bonded interactions that typically occur between small-molecule ligands and macromolecular targets. Due to their simplistic and abstract nature, pharmacophores are both perfectly suited for efficient computer processing and easy to comprehend by life and physical scientists. As a consequence, they have also proven to be a valuable tool for communicating between computational and medicinal chemists.

This chapter aims to provide a short overview of the pharmacophore concept and its applications in modern computer-aided drug design. The chapter is divided into three distinct parts. The first section contains a brief introduction to the pharmacophore concept. The second section provides a description of the most common nonbonded interaction types and their representation as pharmacophoric features. Furthermore, it gives an overview of the various methods for pharmacophore generation and important pharmacophore-based techniques in drug design. This part concludes with examples for recent pharmacophore concept-related research and development. The last section is dedicated to a review of research in the field of natural product chemistry as carried out by employing pharmacophore-based drug design methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA (1998) Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). J Macromol Sci A Pure Appl Chem 70:1129

    Article  CAS  Google Scholar 

  2. Wermuth CG (2006) Pharmacophores: historical perspective and viewpoint from a medicinal chemist. In: Langer T, Hoffmann RD (eds) Methods and principles in medicinal chemistry, vol 32. Wiley-VCH, Weinheim, p 1

    Google Scholar 

  3. Langley JN (1878) On the physiology of the salivary secretion. J Physiol 1:339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Langley JN (1905) On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol 33:374

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ehrlich P, Morgenroth J (1900) Über Hämolysine. Dritte Mitheilung Berl Klin Wschr 37:453

    Google Scholar 

  6. Maehle A-H, Prüll C-R, Halliwell RF (2002) The emergence of the drug receptor theory. Nat Rev Drug Discov 1:637

    Article  CAS  PubMed  Google Scholar 

  7. Albert A (1985) Selective toxicity: the physico-chemical basis of therapy. Springer, Netherlands

    Book  Google Scholar 

  8. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985

    Article  CAS  Google Scholar 

  9. Woods DD (1940) The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Br J Exp Pathol 21:74

    CAS  PubMed Central  Google Scholar 

  10. Woods DD, Fildes P (1940) The anti-sulphanilamide activity (in vitro) of p-aminobenzoic acid and related compounds. Chem Ind 59:133

    Google Scholar 

  11. Dodds EC, Lawson W (1938) Molecular structure in relation to oestrogenic activity. Compounds without a phenanthrene nucleus. Proc R Soc Lond B Biol Sci 125:222

    Article  CAS  Google Scholar 

  12. Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action: molecular dissymmetry and physiological activity. Biochem J 27:1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gund P (2000) Evolution of the pharmacophore concept in pharmaceutical research. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, CA, p 5

    Google Scholar 

  14. Matthews DA, Alden RA, Bolin JT, Freer ST, Hamlin R, Hol WGJ, Kisliuk RL, Pastore EJ, Plante LT, Xuong N Kraut J (1978) Dihydrofolate reductase from Lactobacillus casei. X-Ray structure of the enzyme methotrexate complex. J Biol Chem 253:6946

    CAS  PubMed  Google Scholar 

  15. Wolfenden R (1976) Transition state analog inhibitors and enzyme catalysis. Annu Rev Biophys Bioeng 5:271

    Article  CAS  PubMed  Google Scholar 

  16. Gund P (1979) Pharmacophoric pattern searching and receptor mapping. In: Hess H-J (ed) Annual reports in medicinal chemistry, vol 14. Academic, New York, p 299

    Google Scholar 

  17. Humblet C, Marshall GR (1980) Pharmacophore identification and receptor mapping. In: Hess H-J (ed) Annual reports in medicinal chemistry, vol 15. Academic, New York, p 267

    Chapter  Google Scholar 

  18. Marshall GR, Barry CD, Bosshard HE, Dammkoehler RA, Dunn DA (1979) In: Olson EC, Christoffersen RE (eds) The conformational parameter in drug design: The active analog approach, vol 112. American Chemical Society Books, Washington, DC, p 205

    Google Scholar 

  19. Greene J, Kahn S, Savoj H et al (1994) Chemical function queries for 3D database search. J Chem Inf Comput Sci 34:1297

    Article  CAS  Google Scholar 

  20. Discovery Studio Predictive Science Application | Dassault Systèmes BIOVIA. https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/. Accessed 7 Feb 2019

  21. Phase | Schrödinger. https://www.schrodinger.com/phase. Accessed 7 Feb 2019

  22. Molecular operating environment (MOE) | CCG Inc. https://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm. Accessed 7 Feb 2019

  23. LigandScout | InteLigand GmbH. http://www.inteligand.com/ligandscout/. Accessed 7 Feb 2019

  24. Wolber G, Kosara R (2006) Pharmacophores from macromolecular complexes with LigandScout. In: Langer T, Hoffmann RD (eds) Methods and principles in medicinal chemistry, vol 32. Wiley-VCH, Weinheim, p 13

    Google Scholar 

  25. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160

    Article  CAS  PubMed  Google Scholar 

  26. Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13:23

    Article  CAS  PubMed  Google Scholar 

  27. Krovat EM, Langer T (2003) Non-peptide angiotensin II receptor antagonists: chemical feature based pharmacophore identification. J Med Chem 46:716

    Article  CAS  PubMed  Google Scholar 

  28. Williams MA, Ladbury JE (2008) Hydrogen bonds in protein-ligand complexes. Protein Science Encyclopedia: online 137

    Google Scholar 

  29. Böhm H-J, Klebe G, Kubinyi H (1996) Protein-ligand-Wechselwirkungen. In: Böhm HJ, Klebe G, Kubinyi H (eds) Wirkstoffdesign. Spektrum Akademischer, Heidelberg, p 95

    Google Scholar 

  30. Ma JC, Dougherty DA (1997) The cation−π interaction. Chem Rev 97:1303

    Article  CAS  PubMed  Google Scholar 

  31. Waters ML (2002) Aromatic interactions in model systems. Curr Opin Chem Biol 6:736

    Article  CAS  PubMed  Google Scholar 

  32. Böhm H-J, Klebe G, Kubinyi H (1996) Metalloprotease-Hemmer. In: Böhm HJ, Klebe G, Kubinyi H (eds) Wirkstoffdesign. Spektrum. Akademischer Verlag, Heidelberg, p 505

    Google Scholar 

  33. Englert L, Silber K, Steuber H, Brass S, Over B, Gerber HD, Heine A, Diederich WE, Klebe G (2010) Fragment-based lead discovery: screening and optimizing fragments for thermolysin inhibition. ChemMedChem 5:930

    Article  CAS  PubMed  Google Scholar 

  34. Leach AR, Gillet VJ, Lewis RA, Taylor R (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53:539

    Article  CAS  PubMed  Google Scholar 

  35. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849

    Article  CAS  PubMed  Google Scholar 

  36. Wade RC, Goodford PJ (1993) Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 2. Ligand probe groups with the ability to form more than two hydrogen bonds. J Med Chem 36:148

    Article  CAS  PubMed  Google Scholar 

  37. Schuetz DA, Seidel T, Garon A, Martini R, Körbel M, Ecker GF, Langer T (2018) GRAIL: GRids of phArmacophore Interaction fieLds. J Chem Theory Comput 14:4958

    Article  CAS  PubMed  Google Scholar 

  38. Böhm H-J (1992) The computer program LUDI: A new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61

    Article  PubMed  Google Scholar 

  39. Verdonk ML, Cole JC, Taylor R (1999) SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J Mol Biol 289:1093

    Article  CAS  PubMed  Google Scholar 

  40. Kirchhoff PD, Brown R, Kahn S, Waldman M, Venkatachalam CM (2001) Application of structure-based focusing to the estrogen receptor. J Comput Chem 22:993

    Article  CAS  Google Scholar 

  41. Venkatachalam CM, Kirchhoff P, Waldman M (2000) Receptor-based pharmacophore perception and modeling. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, CA, p 341

    Google Scholar 

  42. Dixon SL (2010) Pharmacophore methods. In: Merz KM Jr, Ringe D, Reynolds CH (eds) Drug design: structure- and ligand-based approaches. Cambridge University Press, Cambridge, p 137

    Chapter  Google Scholar 

  43. Poptodorov K, Luu T, Hoffmann RD (2006) Pharmacophore model generation software tools. In: Langer T, Hoffmann RD (eds) Methods and principles in medicinal chemistry, vol 32. Wiley-VCH, Weinheim, p 17

    Google Scholar 

  44. Triballeau N, Bertrand H-O, Achner F (2006) Are you sure you have a good model? In: Langer T, Hoffmann RD (eds) Methods and principles in medicinal chemistry, vol 32. Wiley-VCH, Weinheim, p 325

    Google Scholar 

  45. Martin YC (1992) 3D database searching in drug design. J Med Chem 35:2145

    Article  CAS  PubMed  Google Scholar 

  46. Manallack DT (1996) Getting that hit: 3D database searching in drug discovery. Drug Discov Today 1:231

    Article  CAS  Google Scholar 

  47. Clark DE, Westhead DR, Sykes RA, Murray CW (1996) Active-site-directed 3D database searching: pharmacophore extraction and validation of hits. J Comput Aided Mol Des 10:397

    Article  CAS  PubMed  Google Scholar 

  48. Good AC, Mason JS (1996) Three-dimensional structure database searches. Rev Comput Chem 67

    Google Scholar 

  49. Hurst T (1994) Flexible 3D searching: The directed tweak technique. J Chem Inf Comput Sci 34:190

    Article  CAS  Google Scholar 

  50. Wolber G, Dornhofer AA, Langer T (2006) Efficient overlay of small organic molecules using 3D pharmacophores. J Comput Aided Mol Des 20:773

    Article  CAS  PubMed  Google Scholar 

  51. Laggner C, Wolber G, Kirchmair J, Schuster D, Langer T (2008) Pharmacophore-based virtual screening in drug discovery. In: Chemoinformatics approaches to virtual screening. The Royal Society of Chemistry, London, p 76

    Chapter  Google Scholar 

  52. Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903

    Article  PubMed  Google Scholar 

  53. Johnson MA, Maggiora GM (1990) Concepts and applications of molecular similarity. Wiley, New York

    Google Scholar 

  54. Leach AR (2001) Molecular modelling: principles and applications. Pearson Education, London

    Google Scholar 

  55. Zhu F, Agrafiotis DK (2007) Recursive distance partitioning algorithm for common pharmacophore identification. J Chem Inf Model 47:1619

    Article  CAS  PubMed  Google Scholar 

  56. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Freisner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647

    Article  CAS  PubMed  Google Scholar 

  57. Wolber G, Seidel T, Bendix F (2010) 3D pharmacophore alignments: does improved geometric accuracy affect virtual screening performance? J Cheminform 2:O10

    Article  PubMed Central  Google Scholar 

  58. Evers A, Hessler G, Matter H, Klabunde T (2005) Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J Med Chem 48:5448

    Article  CAS  PubMed  Google Scholar 

  59. Brint AT, Willett P (1987) Algorithms for the identification of three-dimensional maximal common substructures. J Chem Inf Comput Sci 27:152

    Article  CAS  Google Scholar 

  60. Barnum D, Greene J, Smellie A, Sprague P (1996) Identification of common functional configurations among molecules. J Chem Inf Comput Sci 36:5631

    Article  Google Scholar 

  61. Lemmen C, Lengauer T (2000) Computational methods for the structural alignment of molecules. J Comput Aided Mol Des 14:215

    Article  CAS  PubMed  Google Scholar 

  62. Seidel T, Bendix F, Wolber G (2010) Strategies for 3D pharmacophore-based virtual screening. Drug Discov Today Technol 7:e203–e270

    Article  CAS  Google Scholar 

  63. Güner OF (2000) Pharmacophore perception. Development and use in drug design. International University Line, La Jolla, CA

    Google Scholar 

  64. Kirchmair J, Ristic S, Eder K, Markt P, Wolber G, Laggner C, Langer T (2007) Fast and efficient in silico 3D screening: toward maximum computational efficiency of pharmacophore-based and shape-based approaches. J Chem Inf Model 47:2182

    Article  CAS  PubMed  Google Scholar 

  65. Langer T, Wolber G (2004) Pharmacophore definition and 3D searches. Drug Discov Today Technol 1:203

    Article  CAS  PubMed  Google Scholar 

  66. Pepe MS (2003) The statistical evaluation of medical tests for classification and prediction. Oxford University Press, New York

    Google Scholar 

  67. Triballeau N, Acher F, Brabet I, Pin J-P, Betrand H-O (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48:2534

    Google Scholar 

  68. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649

    Article  CAS  PubMed  Google Scholar 

  69. Gillet VJ, Johnson AP, Mata P, Sike S (1990) Automated structure design in 3D. Tetrahedron Comput Methodol 3:681

    Article  CAS  Google Scholar 

  70. Nishibata Y, Itai A (1991) Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 47:8985

    Article  CAS  Google Scholar 

  71. Tschinke V, Cohen NC (1993) The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypotheses. J Med Chem 36:3863

    Article  CAS  PubMed  Google Scholar 

  72. Pearlman DA, Murcko MA (1993) CONCEPTS: new dynamic algorithm for de novo drug suggestion. J Comput Chem 14:1184

    Article  CAS  Google Scholar 

  73. Gillet V, Johnson AP, Mata P, Sike S, Williams P (1993) SPROUT: a program for structure generation. J Comput Aided Mol Des 7:127

    Article  CAS  PubMed  Google Scholar 

  74. Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19:199

    Article  CAS  PubMed  Google Scholar 

  75. DeWitte RS, Shakhnovich EI (1996) SMoG: de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J Am Chem Soc 118:11733

    Article  CAS  Google Scholar 

  76. Pearlman DA, Murcko MA (1996) CONCERTS: dynamic connection of fragments as an approach to de novo ligand design. J Med Chem 39:1651

    Article  CAS  PubMed  Google Scholar 

  77. Douguet D, Thoreau E, Grassy G (2000) A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J Comput Aided Mol Des 14:449

    Article  CAS  PubMed  Google Scholar 

  78. Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. Mol Mod Ann 6:498

    Article  CAS  Google Scholar 

  79. Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14:487

    Article  CAS  PubMed  Google Scholar 

  80. Zhu J, Fan H, Liu H, Shi Y (2001) Structure-based ligand design for flexible proteins: application of new F-DycoBlock. J Comput Aided Mol Des 15:979

    Article  CAS  PubMed  Google Scholar 

  81. Pegg SC, Haresco JJ, Kuntz ID (2001) A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 15:911

    Article  CAS  PubMed  Google Scholar 

  82. Vinkers HM, de Jonge MR, Daeyaert FFD, Daeyaert FF, Heeres J, Koymans LM, van Lenthe JH, Lewi PJ, Timmerman H, Van Aken K, Janssen PA (2003) SYNOPSIS: SYNthesize and OPtimize System in Silico. J Med Chem 46:2765

    Google Scholar 

  83. Brown N, McKay B, Gilardoni F, Gasteiger J (2004) A graph-based genetic algorithm and its application to the multiobjective evolution of median molecules. ChemInform 35:1079

    Google Scholar 

  84. Pierce AC, Rao G, Bemis GW (2004) BREED: generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. J Med Chem 47:2768

    Article  CAS  PubMed  Google Scholar 

  85. Huang Q, Li L-L, Yang S-Y (2010) PhDD: a new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility. J Mol Graph Model 28:775

    Article  CAS  PubMed  Google Scholar 

  86. Mirjalili V, Noyes K, Feig M (2014) Physics-based protein structure refinement through multiple molecular dynamics trajectories and structure averaging. Proteins 82(Suppl 2):196

    Article  CAS  PubMed  Google Scholar 

  87. Whitesides GM, Krishnamurthy VM (2005) Designing ligands to bind proteins. Q Rev Biophys 38:385

    Article  CAS  PubMed  Google Scholar 

  88. Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444

    Article  CAS  PubMed  Google Scholar 

  89. Wu F, Xu T, He G, Ouyang L, Peng C, Song Z, Xiang M (2012) Discovery of novel focal adhesion kinase inhibitors using a hybrid protocol of virtual screening approach based on multicomplex-based pharmacophore and molecular docking. Int J Mol Sci 13:15668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zou J, Xie H-Z, Yang S-Y, Chen JJ, Ren JX, Wei YQ (2008) Towards more accurate pharmacophore modeling: multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2. J Mol Graph Model 27:430

    Article  CAS  PubMed  Google Scholar 

  91. Choudhury C, Priyakumar UD, Sastry GN (2015) Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase. J Chem Inf Model 55:848

    Article  CAS  PubMed  Google Scholar 

  92. Sohn Y-S, Park C, Lee Y, Thangapandian S, Kim Y, Kim HH, Suh JK, Lee KW (2013) Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J Mol Graph Model 46:1

    Article  CAS  PubMed  Google Scholar 

  93. Thangapandian S, John S, Arooj M, Lee KW (2012) Molecular dynamics simulation study and hybrid pharmacophore model development in human LTA4H inhibitor design. PLoS One 7:e34593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thangapandian S, John S, Lee Y, Kim S, Lee KW (2011) Dynamic structure-based pharmacophore model development: a new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery. Int J Mol Sci 12:9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Spyrakis F, Benedetti P, Decherchi S, Rocchia W, Cavalli A, Alcaro S, Ortuso F, Baroni M, Cruciani G (2015) A pipeline to enhance ligand virtual screening: integrating molecular dynamics and fingerprints for ligand and proteins. J Chem Inf Model 55:2256

    Article  CAS  PubMed  Google Scholar 

  96. Sydow D (2015) Dynophores: novel dynamic pharmacophores. Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät

    Google Scholar 

  97. Sinko W, Lindert S, McCammon JA (2013) Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 81:41

    Article  CAS  PubMed  Google Scholar 

  98. Plattner N, Noé F (2015) Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Nat Commun 6:7653

    Article  PubMed  Google Scholar 

  99. Wieder M, Perricone U, Boresch S, Seidel T, Langer T (2016) Evaluating the stability of pharmacophore features using molecular dynamics simulations. Biochem Biophys Res Commun 470:685

    Article  CAS  PubMed  Google Scholar 

  100. Wieder M, Garon A, Perricone U, Boresch S, Seidel T, Almerico AM, Langer T (2017) Common hits approach: combining pharmacophore modeling and molecular dynamics simulations. J Chem Inf Model 57:365

    Article  CAS  PubMed  Google Scholar 

  101. Ortuso F, Langer T, Alcaro S (2006) GBPM: GRID-based pharmacophore model: concept and application studies to protein–protein recognition. Bioinformatics 22:1449

    Article  CAS  PubMed  Google Scholar 

  102. Mortier J, Dhakal P, Volkamer A (2018) Truly target-focused pharmacophore modeling: a novel tool for mapping intermolecular surfaces. Molecules 23:99E1959

    Article  CAS  Google Scholar 

  103. Kastenholz MA, Pastor M, Cruciani G, Haaksma EEJ, T l F (2000) GRID/CPCA: a new computational tool to design selective ligands. J Med Chem 43:3033

    Article  CAS  PubMed  Google Scholar 

  104. Filer CN (2008) Book review of molecular design. Concepts and applications molecular design. Concepts and applications. By Schneider G, Baringhaus K-H. J Med Chem 51:7020

    Google Scholar 

  105. Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287:1964

    Article  CAS  PubMed  Google Scholar 

  106. Grabowski K, Baringhaus K-H, Schneider G (2008) Scaffold diversity of natural products: inspiration for combinatorial library design. Nat Prod Rep 25:892

    Article  CAS  PubMed  Google Scholar 

  107. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337

    Article  CAS  PubMed  Google Scholar 

  108. Elumalai N, Berg A, Natarajan K, Scharow A, Berg T (2015) Nanomolar inhibitors of the transcription factor STAT5b with high selectivity over STAT5a. Angew Chem Int Ed Eng 54:4758

    Article  CAS  Google Scholar 

  109. Rodrigues T, Reker D, Schneider P, Schneider G (2016) ChemInform abstract: counting on natural products for drug design. ChemInform 47. https://doi.org/10.1002/chin.201630259

  110. Larsson J, Gottfries J, Muresan S, Backlund A (2007) ChemGPS-NP: tuned for navigation in biologically relevant chemical space. J Nat Prod 70:789

    Article  CAS  PubMed  Google Scholar 

  111. Schuster D, Maurer EM, Laggner C, Nashev LG, Wilckens T, Langer T, Odermatt A (2006) The discovery of new 11β-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J Med Chem 49:3454

    Article  CAS  PubMed  Google Scholar 

  112. Rollinger JM, Kratschmar DV, Schuster D, Pfisterer PH, Gumy C, Aubry EM, Brandstötter S, Stuppner H, Wolber G, Odermatt A (2010) 11β-Hydroxysteroid dehydrogenase 1 inhibiting constituents from Eriobotrya japonica revealed by bioactivity-guided isolation and computational approaches. Bioorg Med Chem 18:1507

    Google Scholar 

  113. Abdallah BM, Beck-Nielsen H, Gaster M (2005) Increased expression of 11β-hydroxysteroid dehydrogenase type 1 in type 2 diabetic myotubes. Eur J Clin Investig 35:627

    Article  CAS  Google Scholar 

  114. Kannisto K, Pietiläinen KH, Ehrenborg E, Rissanen A, Kaprio J, Hamsten A, H l Y-J (2004) Overexpression of 11β-hydroxysteroid dehydrogenase-1 in adipose tissue is associated with acquired obesity and features of insulin resistance: studies in young adult monozygotic twins. J Clin Endocrinol Metab 89:4414

    Article  CAS  PubMed  Google Scholar 

  115. Schuster D, Wolber G (2010) Identification of bioactive natural products by pharmacophore-based virtual screening. Curr Pharm Des 16:1666

    Article  CAS  PubMed  Google Scholar 

  116. Barf T, Vallgårda J, Emond R, Häggström C, Kurz G, Nygren A, Larwood V, Mosialou E, Axelsson K, Olsson R, Engblom L, Edling N, Rönquist-Nii Y, Ohman B, Alberts P, Abrahmsén L (2002) Arylsulfonamidothiazoles as a new class of potential antidiabetic drugs. Discovery of potent and selective inhibitors of the 11β-hydroxysteroid dehydrogenase type 1. J Med Chem 45:3813

    Article  CAS  PubMed  Google Scholar 

  117. Vicker N, Su X, Ganeshapillai D, Smith A, Purohitb A, Reed MJ, Potter BVL (2007) Novel non-steroidal inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. J Steroid Biochem Mol Biol 104:123

    Article  CAS  PubMed  Google Scholar 

  118. Amico V, Barresi V, Condorelli D, Spatafora C, Tringali C (2006) Antiproliferative terpenoids from almond hulls (Prunus dulcis): identification and structure-activity relationships. J Agric Food Chem 54:810

    Article  CAS  PubMed  Google Scholar 

  119. He X, Liu RH (2007) Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple’s anticancer activity. J Agric Food Chem 55:4366

    Article  CAS  PubMed  Google Scholar 

  120. Gilar M (2001) Analysis and purification of synthetic oligonucleotides by reversed-phase high-performance liquid chromatography with photodiode array and mass spectrometry detection. Anal Biochem 298:196

    Article  CAS  PubMed  Google Scholar 

  121. Liang ZZ, Aquino R, de Feo V, De Simone F, Pizza C (1990) Polyhydroxylated triterpenes from Eriobotrya japonica. Planta Med 56:330

    Google Scholar 

  122. Gumy C, Thurnbichler C, Aubry EM, Balazs Z, Pfisterer P, Baumgartner L, Stuppner H, Odermatt A, Rollinger JM (2009) Inhibition of 11β-hydroxysteroid dehydrogenase type 1 by plant extracts used as traditional antidiabetic medicines. Fitoterapia 80:200

    Article  PubMed  Google Scholar 

  123. Hughes KA, Webster SP, Walker BR (2008) 11-β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors in Type 2 diabetes mellitus and obesity. Exp Opin Invest Drugs 17:481

    Article  CAS  Google Scholar 

  124. Herrmann F, Lenz M, Jose J, Kaiser M, Brun R, Schmidt TJ (2015) In silico identification and in vitro activity of novel natural inhibitors of Trypanosoma brucei glyceraldehyde-3-phosphate-dehydrogenase. Molecules 20:16154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. World Health Organization (2015) Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected tropical diseases 2015. World Health Organization

    Google Scholar 

  126. Gualdrón-López M, Michels PAM, Quiñones W, Cáceres AJ, Avilán L, Concepción JL (2013) Function of glycosomes in the metabolism of trypanosomatid parasites and the promise of glycosomal proteins as drug targets. In: Jäger T, Koch O, Fiohé L (eds) Trypanosomatid diseases: molecular routes to drug discovery. Wiley-VCH, Weinheim, p 121

    Chapter  Google Scholar 

  127. Cáceres AJ, Michels PAM, Hannaert V (2010) Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol Biochem Parasitol 169:50

    Article  CAS  PubMed  Google Scholar 

  128. Schuster R, Holzhutter H-G (1995) Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells. Eur J Biochem 229:403

    Article  CAS  PubMed  Google Scholar 

  129. Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de N C Soeiro M, Steindel M, Tempone AG (2012) The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases – Part I. Curr Med Chem 19:2128

    Article  CAS  PubMed  Google Scholar 

  130. Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de N C Soeiro M, Steindel M, Tempone AG (2012) The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases – Part II. Curr Med Chem 19:2176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Seidel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seidel, T., Schuetz, D.A., Garon, A., Langer, T. (2019). The Pharmacophore Concept and Its Applications in Computer-Aided Drug Design. In: Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, JK. (eds) Progress in the Chemistry of Organic Natural Products 110. Progress in the Chemistry of Organic Natural Products, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-14632-0_4

Download citation

Publish with us

Policies and ethics